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Abstract

A host of social situations feature graduated punishments. We explain this phe-
nomenon by studying a repeated public good game in which a social planner im-
perfectly monitors agents to detect shirkers. Agents’ cost of contributing is private
information and administering punishments is costly. A low punishment today im-
perfectly sorts agents by type: only low-cost agents contribute. The planner uses
this information optimally by punishing tomorrow’s (alleged) repeat shirkers harsher
than first-time shirkers. The threat of becoming branded as repeat offender allows
the planner to use a very mild punishment for first-time shirkers, attenuating the
costs associated with administering punishments. Graduated punishments are con-
sequently socially optimal as long as the population is not too homogeneous.
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and at IEEF.

1



1 Introduction

A host of social situations involve collective action problems: from the point of view of
the collective it is best if everybody acts in the interest of the group, yet it is individually
optimal to act differently. Examples include tax avoidance, the tragedy of the commons,
using polluting production technologies, and vote abstention. In many instances groups
or societies have managed to induce individuals to behave in the interest of the collective.
One important factor ensuring that individuals are inclined to choose the collectively pre-
ferred action is the presence of a monitoring institution that is able to punish (alleged)
wrongdoers. Many scholars studying collective action problems have observed that succes-
ful punishment schemes often exhibit graduated sanctions: repeat offenders are punished
more severely than first-time offenders (e.g. Agrawal, 2003, Ellickson, 1991, Ostrom, 1990,
2000, Wade, 1994). Graduated sanctions also appear in many judiciary systems, stipulating
that habitual offenders can or must be punished more severely than first-time offenders.1

In its most extreme form graduated punishments are such that first-time offenders receive a
mere warning. Given its widespread use, it is surprising that this phenomenon has received
limited theoretical attention.

We present a theory that explains the prevalence of punishment schemes featuring
graduated punishments. We show that using graduated punishments is often optimal if
monitoring is imperfect, administering punishments is costly, and agents differ with respect
to how ‘tempted’ they are to choose the selfish action.

In our model a social planner faces a repeated public good problem. It is socially
efficient if all agents contribute to the public good in each period, but an agent incurs a
cost each time he contributes. The social planner monitors the behaviour of individual
agents, but this monitoring is imperfect: some non-contributers (shirkers) escape being
detected and some contributors are found guilty of shirking. The planner can administer
punishments to alleged shirkers, but this is costly for society.2 Moreover, because punishing
an innocent person is in general seen as a grave injustice, we allow erroneously punishing a
contributor to involve larger social costs than punishing a shirker.3 The individually borne
cost of contributing to the public good differs among agents and is either high or low. An
agent’s cost type is private information. The planner maximizes welfare, i.e. the social
benefits of the contributions to the public good minus all costs.

Because punishing agents is costly, using a punishment that is sufficiently severe to
deter all agents from shirking need not be optimal. Indeed, in a one-shot setting such a
punishment is only optimal if the number of high-cost types is sufficiently large. If this
number is not sufficiently large, then the social costs of erroneously administering severe

1For example, various state governments in the United States have enacted so-called Three Strikes
Laws. Such laws require state courts to hand down a mandatory and extended period of incarceration to
persons who have been convicted of a serious criminal offense on three or more separate occasions. See
also en.wikipedia.org/wiki/Three_strikes_law.

2These costs include the administrative and legal costs associated with punishing someone. They can
also include the cost of imprisoning someone for some time.

3See for instance the discussion in Chu et al. (2000, p. 130).
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punishments to a large group of low-cost types outweigh the benefits of deterring a small
group of high-cost types from shirking. The planner then sets a low punishment and only
low-cost types contribute to the public good. If agents are not only supposed to contribute
today, but also in future periods, then the planner can often improve upon the outcome of
the one-shot setting by employing graduated punishments.

Using graduated punishments instead of a uniform punishment improves welfare for two
reasons. Firstly, by imposing a mild sanction today the planner is able to (imperfectly)
‘sort’ agents by cost type: only low-cost types contribute if punishments are low. As a
consequence, the planner can in the future (again imperfectly) tailor punishments to types
by imposing a harsh punishment on repeat offenders and a moderate one on first-time
offenders. This tailoring enables the planner to induce a given number of contributions in
a more cost-efficient way.

Secondly, the mere threat of becoming ‘branded’ as shirker and thereby moving from the
low-punishment regime to the high-punishment regime makes an agent reluctant to shirk
today: since monitoring is imperfect and hence contributors are occasionally punished,
being caught shirking today increases expected future punishments, even if the agent plans
to contribute in future periods. In other words, an agent fears getting a reputation of being
a shirker. This fear enables the planner to reduce the punishment for first-time shirkers
below the low punishment of the one-shot setting (i.e. below the punishment that prevails
if the number of high-cost types is small). This reputation effect is particularly strong if
agents are patient. In fact, for all cost parameters one can find a discount rate above which
it suffices to issue a mere warning to first-time offenders.

Using graduated punishments is not always optimal. If the society consists mainly
of high-cost types, then using graduated punishments would yield a very low level of
public good provision. To increase contributions the planner then opts for a uniform
punishment that deters all agents from shirking, i.e. the high punishment of the one-shot
setting. Nonetheless, because monitoring is imperfect, some agents are punished on the
equilibrium path.4 On the other hand, if the vast majority of agents incur the low cost
when contributing, then most agents who end up in the high punishment regime are low-
cost types. It can then be optimal to use the low punishment of the one-shot setting, as
this leads to considerably lower punishment costs without significantly reducing the level
of aggregate contributions.

Our results hinge crucially on the presence of type II errors, i.e. the possibility that the
planner falsely judges someone guilty of shirking. If type II errors were completely absent,
then only shirkers would be punished. The presence of type II errors has two effects.
Firstly, if the planner would never erroneously punish contributors, then agents would not
mind getting a bad reputation and the planner would consequently be unable to reduce the
punishment administered to first-time shirkers below the low punishment of the one-shot
setting. The reason that only type II errors matter in the determination of the reputation
effect is that all agents contribute in each future period as soon as they move to the high-

4This is a common feature of equilibria of games with private information and imperfect monitoring.
See e.g. Green and Porter (1984).
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punishment regime. So, only type II errors lead to punishments being administered to
agents who are branded as shirkers. Secondly, absent type II errors the planner always
ensures that high-cost types contribute in the one-shot setting. The main advantage of
setting a punishment that does not suffice to deter high-cost types from shirking is that
such a low punishment entails low social costs of administering punishments to low-cost
types. Yet, since a low-cost type is only punished if a type II error occurs, this advantage
does not play a role if a contributor is never deemed guilty of shirking.5

If the planner knew each agent’s cost type, then sorting agents by type would be
redundant and the planner would therefore never resort to graduated punishments. With
knowledge of agents’ cost types she would be able to perfectly deter shirking: it suffices to
‘promise’ an agent an expected punishment at least as large as his cost of contributing.6 So,
the fact that an agent’s cost of contributing is private information is essential for graduated
punishments to arise.

Our framework not only applies to classic public good situations, but also to law en-
forcement problems. The cost of contributing to the public good is then replaced by the
opportunity cost of not committing the crime under consideration. Furthermore, most
crimes bestow a negative externality upon society at large. This ranges from commonly
felt disgust following a gruesome murder to a reduction in the safety of online services
caused by cybercrimes. Not engaging in criminal activities therefore increases welfare at
the aggregate level in a similar fashion as contributing to a public good does.

Most collective action problems are plagued by limited monitoring possibilities and
informational asymmetries. Consider for instance a groundwater basin shared by hundreds
of farmers. Such basins can be destroyed by overextraction.7 Whether a particular farmer
extracts more water than he is entitled to is difficult to determine: a sudden drop in
the water level could equally well be caused by overextraction by one of his neighbours.
So, both type I and type II errors are bound to occur. How ‘tempted’ a farmer is to
overextract water depends on unobservable psychological traits as well as the finer details
of the microclimate and the soil composition he faces. His cost type is consequently private
information.

This paper is organized as follows. Section 2 introduces the main ingredients of the
model. The optimal punishment scheme of the one-shot setting can be found in Section 3.
In Section 4 we study a two-periods version of our model. The infinite-horizon setting is
analyzed in Section 5. In Section 6 we relate our work to the literature. Section 7 offers
concluding remarks. All proofs are relegated to the Appendix.

5Type I errors reduce the probability that shirking is detected. Making a type I error with some
probability εI has a similar impact on the optimal punishment(s) as only monitoring a sample containing
a fraction 1−εI of the population: a larger εI leads to higher actual punishments, but expected punishments
remain constant.

6Since monitoring is imperfect, expected punishments are not equal to actual punishments.
7Ostrom (1990), chapter 4, gives an account of the collective action problems surrounding the ground-

water basins near Los Angeles.

4



2 The Environment

A social planner faces a public good problem. If a fraction π of the population contributes to
the public good, then the total social benefits of the public good amount to π. Contributing
to the public good is costly. A fraction 1−ρ of the population consists of agents who incur
the high cost γ when contributing, where γ < 1. The remaining fraction ρ consists of
agents who incur the low cost γ−α when contributing, where α ∈ (0, γ). Because γ < 1, it
is socially optimal if all agents contribute. Yet, for both high-cost and low-cost agents it is
individually optimal to refrain from contributing, i.e. shirk. An agent’s cost type (low-cost
or high-cost) is private information. All agents are risk-neutral. We use the subscript L
(H) to refer to low-cost (high-cost) types.

The planner can monitor agents’ behaviour, enabling her to punish alleged shirkers.
The planner’s monitoring technology is flawed: with probability εI she fails to detect a
shirker (a type I error) and with probability εII she erroneously judges someone guilty of
shirking (a type II error). So, only a fraction 1− εI of the shirkers are caught, whereas a
fraction εII of the contributors are found guilty of something they did not do. We assume
that monitoring agents is free, but that administering punishments is costly. Specifically, if
the planner administers a punishment f , i.e. a punishment that reduces an agent’s utility
by f , then society bears a cost of cf , where c > 0. Furthermore, society bears an extra
cost mf , where m ≥ 0, when an innocent person is punished. So, the marginal social cost
of punishing a shirker is c and the marginal social cost of punishing a contributor is c+m.

The planner maximizes welfare by choosing the punishments administered to alleged
shirkers. These punishments are made public before agents advance to the contribution
stage and we assume that the planner can commit to the announced punishments.8 Wel-
fare W consists of the social benefits of the public good, the individually borne costs of
contributing, and the cost of administering punishments. In a one-shot setting welfare
reads

W = ρ(1− γ + α)δL + (1− ρ)(1− γ)δH − F, (1)

where δL = 1 (δL = 0) if low-cost agents (do not) contribute, δH = 1 (δH = 0) if high-cost
agents (do not) contribute, and F denotes the social costs of administering punishments.
These costs amount to

F = ρ
(
δLεII(c+m) + (1− δL)(1− εI)c

)
f0 + (1− ρ)

(
δHεII(c+m) + (1− δH)(1− εI)c

)
. (2)

where f0 is the punishment that alleged shirkers face.
We assume that the laissez-faire outcome in which punishments are zero and no agent

contributes is never optimal. To ensure that the planner never opts for laissez-faire we
maintain the following condition throughout the paper:

Condition 1 Laissez-faire is never optimal, specifically: 1− γ > εII
1−εI−εII

(c+m)γ.

8This assumption is not innocuous: because punishing agents is costly, ex post the planner prefers to
refrain from punishing alleged shirkers. Assuming that the planner can commit to punishments is common
practice in the literature: we share this assumption with, amongst others, Becker (1968).
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If Condition 1 holds, then the planner prefers harsh punishments to laissez-faire, even
if all agents are high-cost types (ρ = 0). The condition states that the gain in welfare
1 − γ associated with a high-cost agent contributing must exceed the expected cost of
incentivizing a high-cost agent to contribute by setting a sufficiently high punishment. This
expected cost is the marginal cost c + m of punishing a contributor times the probability
εII of making a type II error times the required punishment γ

1−εI−εII
.

Before we study settings with multiple periods, we derive the planner’s optimal strategy
in the one-shot setting. The one-shot outcome serves as a benchmark for the two-periods
setting and the infinite-horizon setting we consider in Section 4 respectively Section 5: in
these two settings the planner can always replicate the one-shot outcome in each period by
simply using the optimal punishment of the one-shot setting. Our analysis of the one-shot
setting therefore yields a lower bound on the per-period welfare that can be attained in
the other settings.

3 The One-shot Setting

An agent contributes if the associated expected costs do not exceed the expected costs the
agent faces when shirking.9 A low-cost type consequently contributes if γ − α + εIIf0 ≤
(1−εI)f0, i.e. if f0 ≥ γ−α

1−εI−εII
. A high-cost type contributes as long as γ+εIIf0 ≤ (1−εI)f0,

which reduces to f0 ≥ γ
1−εI−εII

. So, the planner chooses between the low punishment

(f0 = γ−α
1−εI−εII

) which only induces low-cost types to contribute and the high punishment
(f0 = γ

1−εI−εII
) which ensures that high-cost types also contribute. Comparing the total

welfare associated with the two possibilities yields

Proposition 1 In the one-shot setting the social planner opts for

φf ∗0 =

{
γ if ρ ≤ ρ̄

γ − α if ρ > ρ̄,
(3)

where
φ := 1− εI − εII (4)

measures the quality of the planner’s monitoring technology and

ρ̄ := 1−
εII
φ

(c+m)α

1− γ + c(γ − α)− εII
φ
m(γ − α)

∈ (0, 1). (5)

Since administering punishments is costly, it is not always optimal to induce all agents to
contribute by using the high punishment. If the number of high-cost types is small (ρ large),
then the increase in contributions brought about by moving from the low punishment to the
high punishment is small. This move would also entail administering the high punishment
instead of the low punishment to a fraction εII of the low-cost types. If the population

9We assume that an agent contributes if he is indifferent between contributing and shirking.
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consists mainly of low-cost types the detrimental effect on welfare of administering a higher
punishment to these agents dominates the positive effect of more contributions.

The social costs of erroneously punishing a fraction εII of the low-cost types are in-
creasing in the probability εII that such a type II error occurs, the associated marginal
social cost c+m, and the high individual cost γ. Ignoring the high-cost types by using the
low punishment is particularly attractive if the associated social costs are small, which is
the case if the low individual cost γ − α is small, i.e α is large, or if the marginal social
cost of a type I error c is small. The planner therefore becomes more inclined to use the
low punishment as εII , m, γ, or α increases. In other words, the threshold ρ̄ is decreasing
in these four parameters. Because c affects both the costs associated with erroneous pun-
ishments and those associated with just punishments, the impact of a change in c on ρ̄ is
ambiguous. As εI increases the difference between the two punishments grows, making the
low punishment relatively more attractive. The threshold ρ̄ therefore decreases in εI .

Observe that ρ̄→ 1 as εII → 0. So, the planner always opts for the high punishment γ
φ

if type II errors are never made. The reason is that the main advantage of using the low
punishment γ−α

φ
disappears as εII approaches 0: A lower punishment entails lower social

costs of erroneously administering punishments to low-cost types. Yet, since these agents
are only punished if a type II error occurs, this advantage is absent if εII = 0.

The trade-off between higher contributions and lower social costs also plays a role in
a setting with two periods. Yet, it turns out that the planner often uses information
regarding agents’ past behaviour to alleviate the social costs of punishments.

4 The Two-periods Setting

Agents are now supposed to contribute to the public good twice: in period 1 and in period
2. An agent’s type is again private information. The planner recalls in period 2 whether
or not she has punished a given agent in period 1. Just like in the one-shot setting the
planner makes a type i error with probability εi when investigating an agent’s behaviour,
i ∈ {I, II}. Drawing the wrong conclusion regarding a particular agent’s behaviour in
period 1 does not affect the probability with which she misjudges that agent’s behaviour
in period 2.

Recalling who has been punished in period 1 enables the planner to use differentiated
punishments in period 2, one for agents who have not been punished in period 1 (f2) and
one for agents who have been punished (f̂2). The planner can only use one punishment
(f1) in period 1. The planner announces all punishments at the start of the game.10 Each
agent employs backward induction to arrive at his optimal strategy. The timing of the
game is as follows:

0. The planner announces the punishments.

1a. Each agent decides whether to contribute or to shirk (δL and δH are chosen).

10We again assume that the planner can commit to the announced punishments.
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1b. The planner carries out investigations and administers punishments.

2a. Each agent decides whether to contribute or to shirk.

2b. The planner carries out investigations and administers punishments.

Payoffs are realized at the end of each period. An agent minimizes his total expected costs.
The planner maximizes total welfare W , the sum of welfare in period 1 (W1) and welfare
in period 2 (W2).

Whether the planner does use differentiated punishments is the subject of the next
subsection.

4.1 Analysis

Using two different punishments in period 1 can only be optimal if low-cost types and
high-cost types behave differently in period 1. The reason is that the planner cannot
distill any information regarding an agent’s type from his behaviour in period 1 if the two
types employ the same strategy in that period. So, the planner only uses differentiated
punishments if δL = 1 and δH = 0.11

Since the game ends after period 2, an agent contributes in period 2 if the associated
expected cost does not exceed the expected cost associated with shirking. If the planner
contemplates using two different punishments, she can therefore confine attention to f ∗2 =
γ−α
φ

(for those who have not been punished in period 1) and f̂ ∗2 = γ
φ

(for those who have

been punished in period 1). The pair (f ∗2 , f̂
∗
2 ) induces high-cost types who are punished

in period 1 as well as all low-cost types to contribute in period 2. Because the expected
punishment φf ∗2 is less than their cost of contributing γ, high-cost types who dodged being
punished in period 1 shirk again in period 2 when faced with this pair of punishments.12

The planner induces the period 1-choices δL = 1 and δH = 0 by setting a moderate
punishment f1 that abides by the following incentive compatibility constraints:

• Low-cost types prefer to contribute in period 1 if:

γ − α + εII(f1 + γ − α + εII f̂
∗
2 ) + (1− εII)(γ − α + εIIf

∗
2 ) ≤

(1− εI)(f1 + γ − α + εII f̂
∗
2 ) + εI(γ − α + εIIf

∗
2 ).

The left-hand side of this constraint consists of the expected costs a low-cost type
incurs when contributing in period 1. It equals the cost of contributing γ − α plus
the expected costs associated with being erroneously punished in period 1 and/or
period 2. The right-hand side consists of the expected costs a low-cost type faces

11Because low-cost types incur a lower cost than high-cost types when contributing, we can immediately
discard the possibility that δL = 0 and δH = 1.

12Expressions like φf∗2 actually denote a difference in expected punishments: φf∗2 = (1− εI)f∗2 − εIIf∗2
is the expected punishment faced when shirking minus the expected punishment faced when contributing.
We omit the ”difference in” for ease of exposition.
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when shirking in period 1. Note that we have used the fact that low-cost types always
contribute in period 2 if the pair (f ∗2 , f̂

∗
2 ) is used. Using the expressions for f ∗2 and

f̂ ∗2 and (4) reduces the constraint to

φf1 ≥ γ − α− εIIα. (6)

• High-cost types prefer to shirk in period 1 if:

γ + εII(f1 + γ + εII f̂
∗
2 ) + (1− εII)(1− εI)f ∗2 > (1− εI)(f1 + γ + εII f̂

∗
2 ) + εI(1− εI)f ∗2 .

The left-hand side of this constraint consists of the expected costs a high-cost type
incurs when contributing in period 1 and the right-hand side consists of that type’s
expected costs when shirking in period 1. Observe that we have used the fact that a
high-cost type only contributes in period 2 if he is punished in period 1. Rewriting
the constraint yields

φf1 < γ − α + εIα. (7)

The incentive compatibility constraints (6)-(7) reveal that if the planner opts for differen-
tiated punishments in period 2, then she sets

φf ∗1 = max{γ − α− εIIα, 0}.

It remains to determine when differentiated punishments are optimal. The menu of
punishments f ∗ := (f ∗1 , f

∗
2 , f̂

∗
2 ) is optimal if the total welfare W(f ∗) it generates exceeds

the total welfare W(f ∗0 ) society enjoys should the planner use the single punishment f ∗0
given in (3) in both periods. Comparing these two welfare expressions results in

Proposition 2 There exist ρ̌ ∈ (0, ρ̄) and ρ̂ > ρ̄ such that the social planner maximizes
total welfare by using the menu of punishments

f ∗1 = max{γ−α
φ
− εIIα

φ
, 0}, f ∗2 = γ−α

φ
, f̂ ∗2 = γ

φ
(8)

if ρ ∈ (ρ̌, ρ̂). If either ρ < ρ̌ or ρ > ρ̂, then the social planner maximizes total welfare by
using the single punishment f ∗0 given in (3) in both periods. The upper bound ρ̂ equals 1 if
and only if γ − α− εIIα ≥ 0.

If f ∗ is used, then low-cost types always contribute whereas a high-cost type shirks in
period 1 and contributes in period 2 only if he has been punished in period 1. If the
population is (all but) homogeneous (ρ close to 0 or 1), then the planner opts for the
single punishment given in (3) instead of graduated punishments. This is intuitive: when
faced with a homogeneous population the best the planner can do is to use the smallest
punishment that deters agents of the extant type from shirking in both periods.

The positive effects of using graduated punishments (i.e. of using f ∗) instead of a single
punishment start playing a role as ρ departs from 0 or 1. If the population is heterogeneous,
then using graduated punishments allows the planner to imperfectly sort agents by type.
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The reason is that the period 1-punishment f ∗1 is too low to incentivize high-cost types
to contribute and hence only low-cost types contribute in period 1. This implies that an
alleged period 2-shirker who has already been punished in period 1 is likely to be a high-
cost type. Because the planner occasionally draws the wrong conclusion when investigating
agents’ behaviour, this mechanism only imperfectly sorts agents by type.

This sorting enables the planner to tailor period 2-punishments to types to a large
extent. Since the vast majority of those who have been found guilty of shirking in period
1 are high-cost types and such types can only be deterred from shirking by ‘promising’
them an expected punishment of at least γ, the planner uses the punishment γ

φ
for repeat

offenders. On the other hand, an agent who is found guilty of shirking for the first time in
period 2 is probably a low-cost type. The punishment γ−α

φ
therefore suffices to deter most

of the agents who were not punished in period 1 from shirking in period 2.
Both the low punishment γ−α

φ
and the high punishment γ

φ
of the one-shot setting come

with a severe drawback: the low punishment leads to a suboptimal contribution level (only a
fraction ρ of the population contributes) whereas the high punishment leads to considerable
social costs of administering punishments. If the planner can tailor punishments to types,
albeit imperfectly, then the planner does not face a choice between two severe drawbacks.
Firstly, with graduated punishments only high-cost types who escaped being punished in
period 1 shirk in period 2 and the contribution level in period 2 consequently exceeds ρ.
Secondly, by only administering the high punishment γ

φ
to repeat offenders, the planner

moderates the social costs of administering punishments.
If the population consists mainly of high-cost types (ρ small), then using graduated

punishments would result in a very low level of public good provision in period 1. At the
same time a considerable part of the population, namely a fraction 1− εI of the high-cost
types, would be punished in that period. The associated social costs become smaller as
ρ increases: the number of period 1-shirkers and hence the number of agents who receive
the period 1-punishment decreases in ρ. Furthermore, the level of public good provision
in period 1 increases in ρ. So, the downsides of using graduated punishments become less
severe as ρ increases. This explains why the lower bound ρ̌ always exceeds 0 whereas the
upper bound ρ̂ often equals 1.

Observe that the period 1-punishment f ∗1 = γ−α−εII
φ

is less than γ−α
φ

, the smallest
punishment that deters low-cost types from shirking in the one-shot setting. The reason
that the planner is able to incentivize low-cost types to contribute in period 1 with an
expected punishment below their cost of contributing γ − α is that an agent found guilty
of shirking in period 1 receives part of his ‘effective punishment’ indirectly. Such an agent
not only faces the (direct) punishment f ∗1 , but he will also receive the high punishment f̂ ∗2
instead of the lower punishment f ∗2 should he be found guilty of shirking a second time.
So, the threat of becoming known as a repeat offender, i.e. the fear of getting a bad
reputation, allows the planner to reduce the expected punishment used in period 1 below
the low punishment that is required in a one-shot setting. The size of this reputation effect
equals the loss in expected utility stemming from getting a bad reputation: εIIα

φ
is the

difference between f̂ ∗2 and f ∗2 times the probability that a contributing agent is erroneously
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found guilty of shirking. If γ − α − εIIα ≤ 0, then f ∗1 = 0. So, if the probability that the
planner makes a type II error is sufficiently large, then she merely warns an alleged period
1-shirker. In that case the size of the reputation effect is smaller than εIIα

φ
.13

5 The Infinite-horizon Setting

Time t = 1, 2, 3, . . . is discrete. Each period t consists of three stages. In the first stage
each agent chooses between contributing to the public good and shirking. In the second
stage the social planner carries out investigations and punishes agents who have been
found guilty of shirking. In the last stage, the renewal stage, a fraction 1 − β ∈ (0, 1) of
the population dies and is replaced by new agents. The probability that a given agent
dies does not depend on his type, how often he has shirked, or the number of times he
has been punished. So, each agent advances to the next period with probability β. The
population is again characterized by the parameters γ, α, and ρ. In particular, a fraction
ρ of each generation and thus of the population in any period incurs the low cost γ − α
when contributing. Since γ < 1, it is socially optimal that an agent contributes in each
period that he lives.

The planner is immortal and keeps track of whether or not a given agent has been
punished in the past. The quality of her monitoring technology is again characterized by
the probabilities εI and εII . She announces all punishments that might be applicable in
period t at the start of that period, before agents decide whether to contribute or to shirk.
She can opt to use two different punishments, one for agents who have never been punished
before (ft) and one for agents who have been punished at least once (f̂t). Alternatively,
she can administer the same punishment to all alleged shirkers. Since the fraction low-cost
types is ρ in each period, the planner chooses the punishment f ∗0 given in (3) in the latter
case.

The population can be divided in four categories: low-cost types who have never been
punished, low-cost types who have been punished at least once, high-cost types who have
never been punished, and high-cost types who have been punished at least once. We focus
on the stationary equilibria of the model, i.e. equilibria that can prevail if the composition of
the population with respect to the above categorization remains unaltered as the economy
moves from some period to the next one. So, we focus on the very long run (t→∞).

In each period the planner aims to maximize the welfare generated in that period. Ob-
serve that a strategy of the planner that supports a stationary equilibrium in the present
setting also supports the corresponding stationary equilibrium of the game in which the
planner maximizes current welfare plus discounted future welfare, irrespective of the dis-

13If f∗1 = γ−α−εIIα
φ and ρ = 1, then the reduction in aggregate punishments in period 1 due to the

reputation effect equals the increase in aggregate punishments in period 2 caused by the fact that some
agents receive the punishment f̂∗2 instead of f∗2 . The planner therefore becomes indifferent between using
f∗0 and using f∗ as ρ → 1 if γ − α − εIIα ≥ 0, i.e. if the size of the reputation effect is εIIα

φ . If the
reputation effect is smaller, then it does not fully offset the detrimental effect on welfare of administering
the punishment f̂∗2 instead of f∗2 to repeat offenders and ρ̂ is consequently smaller than 1.

11



count rate. An agent minimizes his expected current and discounted future costs. The
only difference between the planner and agents regarding their attitude towards the future
stems from the fact that the former is immortal whereas an agent dies with probability
1− β at the end of a period. It is therefore natural to use β as the agents’ discount factor
between periods. Payoffs are realized after the punishment stage, but before the renewal
stage.

A stationary equilibrium is supported by a pair of punishments f ∗ and f̂ ∗ and four
contribution rules: δ∗L, δ̂∗L, δ∗H , and δ̂∗H . Here, δ∗j = 1 (δ∗j = 0) if a type j-agent who has

never been punished decides (not) to contribute, j = L,H. Similarly, δ̂∗j = 1 (δ̂∗j = 0) if a
type j-agent who has been punished at least once decides (not) to contribute, j = L,H.
Of course, the equilibrium contribution rules must be best responses to the equilibrium
punishments and vice versa.

The optimal strategy of the planner depends on the composition of the population. In
the next subsection we first derive the composition of the population as t→∞ before we
determine the stationary equilibria of the game. We omit any reference to taking limits in
these subsections if there is no risk of confusion.

5.1 Analysis

Whether a given agent has been punished in the past is irrelevant if the planner opts for
the uniform punishment given in (3). Just like in the two-periods setting using graduated
punishments can only be optimal if these punishments are such that low-cost types always
contribute whereas a high-cost type only contributes if he has been punished at least once.
We can thus confine attention to the contribution strategies (δL, δ̂L, δH , δ̂H) = (1, 1, 0, 1).

Let q̂ (q) be the fraction of the population that has (never) been punished in the past.
Denote the fraction of the population that consists of low-cost types who are in q (q̂) by µ
(µ̂).14 By definition q̂ = 1− q and µ̂ = ρ− µ. Furthermore, the fraction of the population
that consists of high-cost types who are in q equals q − µ. Using the facts that a fraction
1− δ of the old population is replaced by new agents and that (δL, δH) = (1, 0) one infers
that in a stationary equilibrium with graduated punishments q abides by the following
‘flow equation’:

q =(1− β) + βµ
(
δL(1− εII) + (1− δL)εI

)
+ β(q − µ)

(
δH(1− εII) + (1− δH)εI

)
=1− β + βφµ+ βεIq.

The right-hand side of this equation contains the inflow of new agents (which equals 1−β)
and the agents who stay in q because they have not been punished in the previous period
(which equals a fraction 1− εII of the contributors in q plus a fraction εI of the shirkers in
q). The flow equation for µ reads

µ = (1− β)ρ+ βµ
(
δL(1− εII) + (1− δL)εI

)
= (1− β)ρ+ β(1− εII)µ.

14We allow ourselves a slight abuse of notation by using q̂ (q) for the fraction of the population that has
(never) been punished in the past as well as for the set of agents with this feature.
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Combining the two flow equations yields

Lemma 1 Suppose that (δL, δH) = (1, 0). Then:

q =
(1− β)(1− βεI − βφ(1− ρ))

(1− βεI)(1− η)
, µ =

(1− β)ρ

1− η
, (9)

where η := β(1− εII) is the probability that a contributor stays in q for one more period.

Observe that
µ

q
=

1− βεI
1− βεI − βφ(1− ρ)

× ρ > ρ,

i.e. in q the fraction of low-cost types exceeds ρ. This is intuitive: because low-cost types
in q contribute, most of them stay in q. On the other hand, the majority of the high-cost
types, being found guilty of shirking, move to q̂ and hence q̂−µ̂

q̂
= 1− µ̂

q̂
> 1− ρ.

Let us now determine for which pair of punishments f and f̂ the contribution strategies
(δL, δ̂L, δH , δ̂H) = (1, 1, 0, 1) prevail. An agent minimizes his expected discounted costs by
choosing between contributing and shirking.15 Denote the continuation cost of a type j-
agent who is in q (q̂) by Cj (Ĉj), j = L,H. Then agents’ behaviour is governed by the
following four Bellman equations:

• Bellman equation for low-cost types who have never been punished:

CL =

min
δL∈{0,1}

[
δL
(
γ−α+εII(f+βĈL)+(1−εII)βCL

)
+(1−δL)

(
(1−εI)(f+βĈL)+εIβCL

)]
.

(10)

If a low-cost type in q contributes (δL = 1), then he incurs the cost γ − α. With
probability εII he is erroneously found guilty of shirking in which case he receives the
punishment f and moves to q̂. If he is not punished, which happens with probability
1 − εII , then he stays in q. To understand the (1 − δL)-part of (10), note that the
planner detects shirking with probability 1− εI , in which case the agent receives the
punishment f and moves to q̂. With probability εI the shirking agent escapes being
punished and stays in q. In all cases the agent advances to the next period with
probability β.

• Bellman equation for low-cost types who have been punished in the past:

ĈL = min
δ̂L∈{0,1}

[
δ̂L
(
γ − α + εII f̂

)
+ (1− δ̂L)(1− εI)f̂ + βĈL

]
. (11)

15If low-cost types or high-cost types would employ a mixed strategy, then an infinitesimal increase in
(one of) the punishment(s) would lead to a discrete upward jump in contributions. This renders mixed
strategy equilibria impossible. We can thus confine attention to pure strategies.
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Since an agent cannot escape from q̂, CL is absent from (11). Furthermore, if an
agent in q̂ is found guilty of shirking, which happens with probability εII if that
agent contributes and with probability 1 − εI if that agent shirks, then he receives
the punishment f̂ .

• Bellman equation for high-cost types who have never been punished:

CH =

min
δH∈{0,1}

[
δH
(
γ+εII(f+βĈH)+(1−εII)βCH

)
+(1−δH)

(
(1−εI)(f+βĈH)+εIβCH

)]
.

(12)

This equation is akin to (10): the main difference stems from the fact that a high-cost
type incurs the cost γ instead of the cost γ − α when he contributes.

• Bellman equation for high-cost agents who have been punished in the past:

ĈH = min
δ̂H∈{0,1}

[
δ̂H
(
γ + εII f̂

)
+ (1− δ̂H)(1− εI)f̂ + βĈH

]
. (13)

Construction of this equation mirrors that of (11).

One easily verifies that δ̂L = 1 is optimal if φf̂ ≥ γ − α and that δ̂H = 1 is optimal
if φf̂ ≥ γ. Consequently, if the planner does use differentiated punishments, then f̂ = γ

φ
.

With this punishment for repeat offenders and given the contribution strategies δ̂L = δ̂H =
1 the continuation costs for agents in q̂ become

ĈL
∣∣
f̂= γ

φ

=
γ − α + εII

γ
φ

1− β
, ĈH

∣∣
f̂= γ

φ

=
γ + εII

γ
φ

1− β
. (14)

These continuation costs equal the discounted costs of contributing in each period plus the
discounted expected (erroneous) punishments.

From (10) one gathers that low-cost types in q contribute if γ−α ≤ φf +φβ(ĈL−CL).
From (12) it follows that high-cost types in q shirk if γ > φf + φβ(ĈH − CH). These two
inequalities are the incentive compatibility constraints that must hold if the planner opts
for graduated punishments. Combining these constraints with (14) yields16

φf ≥ γ − α− β
1−β εIIα, φf < γ. (15)

The incentive compatibility constraint for low-cost types (φf ≥ γ − α − β
1−β εIIα)

resembles its counterpart in the two-periods setting (see (6)). The only difference between
the two constraints is that the reduction in the required punishment stemming from the
reputation effect is now multiplied by β

1−β . This number is an agent’s life expectancy
and hence an agent who plans to contribute in each period expects to be erroneously

16See the Appendix for details.
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punished β
1−β εII times.17 The incentive compatibility constraint for high-cost types does

differ dramatically from its counterpart (7). The reason is that the planner uses two
punishments if she opts for graduated punishments in the infinite-horizon setting, whereas
she uses three punishments (the menu f ∗) is he opts for graduated punishments in the
two-periods setting. Since both the expected punishment for agents in q̂ and a high-cost
type’s cost of contributing are equal to γ, a high-cost type shirks when in q as long as the
expected punishment for agents in q is less than γ.

Since γ−α− β
1−β εIIα < γ, the planner can always find a punishment f such that agents

opt for (δL, δH) = (1, 0) given that f̂ = γ
φ
. Inducing these contribution strategies is often

optimal:

Proposition 3 There exist ρ̌∞ ∈ (0, ρ̄) and ρ̂∞ ∈ (ρ̄, 1] such that the social planner max-
imizes per-period welfare by using the pair of punishments

f ∗ = max{γ−α
φ
− β

1−β
εIIα
φ
, 0}, f̂ ∗ = γ

φ
(16)

if ρ ∈ (ρ̌∞, ρ̂∞). If either ρ < ρ̌∞ or ρ > ρ̂∞, then the social planner maximizes per-period
welfare by using the single punishment f ∗0 given in (3) in both periods. The upper bound
ρ̂∞ equals 1 if and only if γ − α− β

1−β εIIα ≥ 0.

If graduated punishments are used, then low-cost types always contribute whereas high-
cost types shirk as long as they have not yet received a punishment. A high-cost type
shirks on average 1

1−βεI
times.18

Recall that in the two-periods setting agents only fear getting a bad reputation in the
first period. The incentives of agents consequently differ across periods and the planner
therefore has to use three different punishments when opting for graduated punishments:
one for those found guilty of shirking in period 1, one for first-time offenders in period 2,
and one for repeat offenders. By contrast, only two punishments are used in the stationary
equilibrium of the infinite-horizon setting. The reason is that getting a bad reputation
always increases an agent’s expected discounted future costs in the infinite-horizon setting.
In that setting the planner can therefore always administer the cost-efficient punishment
f ∗ to alleged first-time offenders.

The (maximal) difference between the punishment for first-time offenders f ∗ and the
low punishment of the one-shot setting (γ−α

φ
), i.e. β

1−β
εIIα
φ

, equals the size of the reputation

effect of the two-periods setting ( εIIα
φ

) times an agent’s life expectancy ( β
1−β ). So, the size of

the reputation effect in the infinite-horizon setting is the loss in expected per-period utility
stemming from getting a bad reputation times the expected number of periods that an
agent stays alive. As β becomes sufficiently large the planner arrives at a corner solution

17An agent stays alive for exactly k periods after the current period with probability βk(1− β). His life
expectancy thus equals

∑
k∈N kβ

k(1− β) = β(1− β) d
dβ

(∑
k∈N β

k
)

= β
1−β .

18With probability 1 − εI + εI(1 − β) = 1 − βεI a shirking high-cost type is caught shirking or fails to
advance to the next period. In both cases he stops shirking. With the complementary probability βεI he
advances to the next period and shirks in that period. So, the expected number of times a high-cost type
shirks is

∑∞
k=0(k + 1)(1− βεI)(βεI)k = 1

1−βεI .
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in which she merely issues warnings to first-time offenders (f ∗ = 0). The reason that
warnings suffice to induce low-cost types to contribute is intuitive: the larger β is, the
more important expected future costs are (relative to costs incurred in the current period)
and the more agents fear moving to q̂ and the lower f ∗ consequently can be.

Even though a solution with warnings entails zero costs of punishing first-time offenders,
it is suboptimal if the fraction of low-cost types ρ is very large. The rationale behind this
result has already been alluded to in footnote ..: If ρ = 1 and f ∗ = γ−α

φ
− β

1−β
εIIα
φ

, then the
reduction in aggregate punishments to alleged first-time offenders due to the reputation
effect equals the increase in aggregate punishments to alleged repeat offenders due to the
fact that they receive the punishment γ

φ
instead of γ−α

φ
. However, if γ−α

φ
< β

1−β
εIIα
φ

, then
the planner, being forced to set f ∗ = 0, cannot fully exploit the reputation effect and the
reduction in aggregate punishments to alleged first-time offenders is consequently smaller
than the increase in aggregate punishments to alleged repeat offenders.

Note that if both ρ and β are close to 1, then the population consists mainly of (long-
lived) low-cost types. Because β is large, it is very likely that such a low-cost type spends a
large part of his life in q̂: since monitoring is imperfect, the probability that a law-abiding
agent is found guilty of shirking at least once in τ periods goes to 1 as τ → ∞. In fact,
q̂, the fraction of the population that has been punished at least once, converges to 1
as β ↑ 1. The vast majority of the agents in q̂ are thus low-cost types if ρ and β are
both large. Administering the high punishment f̂ ∗ to low-cost types is clearly suboptimal:
the punishment γ−α

φ
suffices to deter these agents from shirking. Because the number of

high-cost types in q̂ is negligible if ρ is close to 1, administering the punishment f ∗ to
repeat offenders is dominated by administering the more cost-efficient punishment γ−α

φ
.

The planner therefore does not use graduated punishments if ρ and β are both close to 1.

6 Relation to the Literature

Graduated punishments have received quite some theoretical attention, most notably from
law and economics scholars. Various explanations for this phenomenon have been proposed.
Miceli and Bucci (2005) argue that the dire labour market prospects of convicted criminals
makes committing crimes relatively more attractive for those who already have a criminal
record. This effect can be negated by punishing repeat offenders harsher than first-time
offenders. If offenders learn how to evade apprehension, as in Mungan (2010), then the
expected punishment a repeat offender faces is lower than the expected punishment a first-
time offender faces should the actual punishment remain the same. It is then optimal
to set the actual punishment for repeat offenders higher than the actual punishment for
first-time offenders. Of course, law enforcers could also learn from past offenses, yielding
an increase in the probability that repeat offenses are detected. If law enforcers learn more
than offenders, then the optimal punishment for repeat offenders is lower than the one for
first-time offenders.19

19Dana (2001) provides ample arguments in favour of a higher probability of detection for repeat offend-
ers.
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Stigler (1970) argued informally that heavy penalties are unnecessary for first-time
offenders if they are likely to have committed the offense accidentally and the probability
of repetition is negligible. In Rubinstein (1979) offenses may also have been committed by
accident. Convicting innocent offenders is detrimental to welfare. Rubinstein shows that
it is then optimal to be lenient towards individuals with a ‘reasonable’ criminal record,
i.e. those individuals are not administered the exogenously given punishment. Erroneous
convictions also play a central role in Chu et al. (2000). Their planner tries to minimize
total social costs, which consists of the harm imposed on society by criminal conduct and
the cost of erroneous convictions. Chu et al. (2000) establish that in a two-period setting
society is always best off if alleged repeat offenders are punished more severely than alleged
first-time offenders. Such a solution is optimal, because the probability of convicting an
innocent offender twice is much lower than convicting an innocent offender only once.
Since punishing those who did commit crimes is costless, Chu et al.’s planner does not face
a trade-off between crime prevention and cost minimization comparable to our trade-off
between public good provision and cost minimization. Furthermore, they do not allow the
punishment for first-time offenders in period 1 to differ from its counterpart in period 2.
Their solution consequently fails to appreciate any reputation effects.

Polinsky and Rubinfeld (1991) study a setting with perfect monitoring. They assume
that an individual’s gain from committing some crime has two components: a socially
acceptable gain and an illicit gain. The latter is a fixed trait. By contrast, an individ-
ual’s acceptable gain is drawn from some distribution at the start of each period. Both
components are private information. The planner maximizes aggregate acceptable gains
minus harms stemming from criminal activities by choosing fines for first and second of-
fenses. Since some crimes are socially efficient, the planner never opts for full deterrence.
Individuals who commit crimes in the first period are likely to enjoy high illicit gains, es-
pecially if the fine for first offenses is low. This allows the planner to sort agents by ‘illicit
type’. Using higher fines for second offenses reduces underdeterrence vis-à-vis low uniform
fines and reduces overdeterrence vis-à-vis high uniform fines, making such graduated fines
socially optimal for some parameter values.20

Unlike Polinsky and Rubinfeld (1991), Polinsky and Shavell (1998) only consider ac-
ceptable gains in their two-period model with perfect monitoring. Polinsky and Shavell’s
planner has to expend resources to apprehend offenders and punishments cannot exceed
some upper bound. Because administering punishments itself is costless, the planner uses
this maximal punishment should using a uniform punishment be optimal. Since employing
graduated punishments creates a reputation effect (a difference in tomorrow’s punishments
for first-time and repeat offenders makes agents more reluctant to commit a crime today),
it can be optimal to set the punishment for first-time offenders in the second period below
the maximal punishment. This reputation effect increases crime deterrence in period one,
but reduces deterrence in period two. Whether the positive period-one effect outweighs
the negative period-two effect depends on the distribution from which acceptable gains are

20If acceptable gains were fixed and illicit gains were drawn at the start of each period, then it can be
optimal to use lower fines for second offenses.

17



drawn. In contrast to our reputation effect, Polinsky and Shavell’s reputation effect has
no impact on the punishment that prevails in period one.

In Rubinstein (1980) an agent’s income should he abide the law is stochastic. Because
the probability that the agent is caught when committing a crime is less than one, his
income from criminal activities is also stochastic. Whether a uniform punishment scheme
(in which punishments for first-time offenders and repeat offenders equal the maximal pun-
ishment) or a graduated punishment scheme is best at minimizing the number of offenses
depends on the agent’s risk attitude.

Warnings play a prominent role in Harrington (1988). Harrington, studying the en-
forcement of compliance with environmental regulations, shows that a planner who knows
each firm’s cost of compliance can achieve a higher compliance rate (compared to a sys-
tem with a uniform punishment) by resorting to a system in which firms with relatively
good compliance records are merely warned. Just like in our model, firms do not want to
lose their good reputation, i.e. move to a high punishment regime. Yet, since Harrington
(1988) assumes perfect monitoring, this result hinges on the presence of an upper bound to
punishments. In a more recent paper, Rousseau (2009) argues that the use of warnings re-
duces the number of erroneous convictions and at the same time mitigates overcompliance
to regulations by low types. Importantly, Rousseau assumes that the structure of punish-
ments is exogenously given and that the planner can only choose between administering
the appropriate punishment and warning the alleged violator.

Landsberger and Meilijson (1982) study how tax evasion is best combatted in a dy-
namic setting with an exogenously given penalty system and a homogeneous population.
The tax authority is resource-constrained and can hence only audit a fraction of the pop-
ulation. Landsberger and Meilijson show that if the tax authority is sufficiently resource-
constrained, then tax revenues are higher (compared to a uniform probability of being
audited) if those who have been caught evading taxes in the previous period are audited
with a higher probability than those who have not been caught evading taxes in the pre-
vious period.

Our approach is related to the model developed by Abreu et al. (2005). They study
ongoing relationships between two players in which one player is tempted to depart from
jointly efficient behaviour. How tempted that player is is private information. The other
player receives signals regarding the tempted player’s behaviour and can administer punish-
ments to that player. In equilibrium punishments can go in either direction after perceived
bad behaviour. The sign of the change in punishment depends crucially on the distribution
from which the level of temptation is drawn. Although Abreu et al. (2005) stress that both
asymmetric information and imperfect monitoring are a prerequisite for graduated punish-
ments to occur, the setting they consider differs considerably from ours. They investigate
a one-sided prisoner’s dilemma with players who try to maximize their own payoff. In our
public good game only the agents are selfish, the planner is benevolent. More importantly,
the player who is tempted to depart from jointly efficient behaviour is infinitely impatient.
As a consequence, reputation effects do not play a role in Abreu et al. (2005).
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7 Concluding Remarks

We have investigated the optimal punishment scheme a social planner uses when confronted
with a repeated public good problem. Because monitoring is imperfect and administer-
ing punishments is costly, a uniform punishment is often suboptimal. To alleviate the
detrimental effects on welfare of monitoring mistakes and costly punishments, the planner
employs a punishment scheme featuring graduated punishments: repeat offenders are pun-
ished harsher than first-time offenders. Such a punishment scheme allows the planner to
(imperfectly) sort agents by cost type, enabling her to tailor future punishments to type.
Moreover, because agents fear becoming branded as shirkers, i.e getting a bad reputation,
the planner can allow herself to sanction first-time offenders very mildly. In fact, merely
warning first-time offenders often suffices.

Obviously, one can envision more elaborate punishment schemes. For instance, in most
judiciary systems the punishment a convicted criminal receives does not simply depend
on whether this person already has a criminal record, but also on the precise content of
such a record. Furthermore, we have only looked at the stationary equilibria of the infinite-
horizon setting. We have consequently left an important question unanswered: under what
conditions do groups or societies reach steady states in which graduated punishments are
employed? Analysis of the short run-properties of a repeated game akin to the one discussed
in Section 5 could help answering this question. These issues might prove fruitful avenues
for future research.

Appendix

Details regarding Condition 1
Suppose that ρ = 0. To induce agents to contribute the planner has to set a punishment f
such that γ+εIIf ≤ (1−εI)f and hence the planner opts for f ∗ = γ

1−εI−εII
. The associated

welfare reads
W (f ∗) = 1− γ − εII

1−εI−εII
(c+m)γ,

which is positive if 1− γ > εII
1−εI−εII

(c+m)γ holds.

Proof of Proposition 1
Welfare with the low punishment equals

W (γ−α
φ

) = ρ(1− γ + α)− ρ εII
φ

(c+m)(γ − α)− (1− ρ)1−εI
φ
c(γ − α), (A.1)

where we used the fact that δL = 1 and δH = 0 if φf0 = γ − α.
If the planner uses the high punishment, then δL = δH = 1 and hence welfare becomes

W (γ
φ
) = ρ(1− γ + α) + (1− ρ)(1− γ)− εII

φ
(c+m)γ. (A.2)

The difference in welfare ∆ = ∆(ρ) := W (γ
φ
)−W (γ−α

φ
) between the two options reads

∆ =(1− ρ)(1− γ)− εII
φ

(c+m)γ + ρ εII
φ

(c+m)(γ − α) + (1− ρ)1−εI
φ
c(γ − α)

=(1− ρ)(1− γ)− εII
φ

(c+m)α + (1− ρ)c(γ − α)− (1− ρ) εII
φ
m(γ − α).
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Solving ∆(ρ) = 0 yields ρ = ρ̄. Note that

∆′(ρ) =− (1− γ)− c(γ − α) + εII
φ
m(γ − α) < − εII

φ
(c+m)γ − c(γ − α) + εII

φ
m(γ − α)

=− εII
φ
c(γ + α)− c(γ − α) < 0,

where we used Condition 1 to establish the first inequality. Furthermore,
∆(1) = − εII

φ
(c+m)α < 0 and

∆(0) = 1− γ + c(γ − α)− εII
φ
cα− εII

φ
mγ > 1− γ + c(γ − α)− εII

φ
(c+m)γ > c(γ − α),

where the first inequality follows from the fact that γ > α and the second one from Con-
dition 1. The above observations imply that the planner opts for the punishment γ−α

φ
if

ρ ≤ ρ̄ whereas she opts for the punishment γ
φ

if ρ > ρ̄ and that ρ̄ ∈ (0, 1).

Proof of Proposition 2
The total welfare W(f ∗0 ) generated if the planner uses the single punishment f ∗0 is

W(f ∗0 ) =

{
2W (γ

φ
) if ρ ≤ ρ̄

2W (γ−α
φ

) if ρ > ρ̄,

where W (γ
φ
) and W (γ−α

γ
) can be found in (A.2) respectively (A.1). We have to compare

W(f ∗0 ) with W(f ∗) = W1(f ∗) +W2(f ∗).
In period 2 all low-cost types as well as those high-cost types who were caught shirking

in period 1, i.e. a fraction 1−εI of the high-cost types, contribute. This yields, after taking
into account agents’ costs of contributing, an aggregate payoff of

ρ(1− γ + α) + (1− ρ)(1− εI)(1− γ).

We have to deduct the social costs of administering punishments from this figure. These
costs amount to

F2(f ∗) = ρε2II(c+m)f̂ ∗2 +ρ(1−εII)εII(c+m)f ∗2 +(1−ρ)(1−εI)εII(c+m)f̂ ∗2 +(1−ρ)εI(1−εI)cf ∗2 .

So, W2(f ∗) = ρ(1− γ + α) + (1− ρ)(1− εI)(1− γ)− F2(f ∗).
In period 1 only the low-cost types contribute, yielding an aggregate payoff of

ρ(1− γ + α). The social costs of administering punishments in period 1 read

F1(f ∗1 ) = ρεII(c+m)f ∗1 + (1− ρ)(1− εI)cf ∗1 .

Welfare in period 1 thus reads W1(f ∗) = ρ(1− γ + α)− F1(f ∗1 ) and total welfare equals

W(f ∗) = 2ρ(1− γ + α) + (1− ρ)(1− εI)(1− γ)− F1(f ∗1 )− F2(f ∗). (A.3)

The punishment f ∗1 is either γ−α−εIIα
φ

or 0 whereas f ∗0 is either γ
φ

or γ−α
φ

. Let us now
investigate the four parameter regions leading to these four combinations of f ∗1 and f ∗0 :
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• γ − α− εIIα ≥ 0 and ρ ≤ ρ̄: In this case f ∗1 = γ−α−εIIα
φ

and f ∗0 = γ
φ
. Straightforward

calculations reveal that

F1(f ∗1 ) + F2(f ∗) =
(
2ρεII + (1− ρ)(1− εI)εII

)
(c+m)γ−α

φ
+ (1− ρ)(1− εI)εIImα

φ

+ (1− ρ)(1− εI)(1 + εI)c
γ−α
φ
.

(A.4)

Subtracting W(f ∗0 ) = 2W (γ
φ
) from W(f ∗) now yields

∆ :=W(f ∗)−W(f ∗0 ) = (1− ρ)(1− εI)(1− γ)− 2(1− ρ)(1− γ)

−
(
2ρεII + (1− ρ)(1− εI)εII

)
(c+m)γ−α

φ
− (1− ρ)(1− εI)εIImα

φ

− (1− ρ)(1− εI)(1 + εI)c
γ−α
φ

+ 2εII(c+m)γ
φ

=− (1 + εI)(1− ρ)
(
1− γ + c(γ − α)− εII

φ
m(γ − α)

)
+ 2εII(c+m)α

φ
− (1− ρ)(1− εI)εIImα

φ
,

where we used φ = 1− εI − εII to establish the second equality. Note that ∆ = ∆(ρ)
is strictly increasing in ρ. Setting ρ = 0 gives us

∆(0) =− (1 + εI)
(
1− γ + c(γ − α)− εII

φ
m(γ − α)

)
+ 2εII(c+m)α

φ
− (1− εI)εIImα

φ

<− (1 + εI)
(
εII
φ

(c+m)γ + c(γ − α)− εII
φ
m(γ − α)

)
+ 2εII(c+m)α

φ
− (1− εI)εIImα

φ

=− (1 + εI)εIIc
γ
φ
− c(γ − α) + 2εIIc

α
φ

≤−
(
(1 + εI)εII + φ

)
c(1 + εII)

α
φ

+
(
φ+ 2εII

)
cα
φ

= −εIε2II αφ < 0,

where the first inequality follows from Condition 1 and the second inequality follows
from the fact that γ − α− εIIα ≥ 0. Furthermore:

∆(ρ̄) =− (1 + εI)
εII
φ

(c+m)α + 2εII(c+m)α
φ
− (1− ρ̄)(1− εI)εIImα

φ

=(1− εI)εII(c+m)α
φ
− (1− ρ̄)(1− εI)εIImα

φ
> 0.

So, W(f ∗) >W(f ∗0 ) if ρ ∈ (`+, ρ̄] for some lower bound `+ ∈ (0, ρ̄).

• γ−α−εIIα ≥ 0 and ρ > ρ̄: In this case f ∗1 = γ−α−εIIα
φ

and f ∗0 = γ−α
φ

. The social costs

of administering punishments are again those given in (A.4). Subtracting 2W (γ−α
φ

)

from W(f ∗) results in

∆ =2ρ(1− γ + α) + (1− ρ)(1− εI)(1− γ)− 2ρ(1− γ + α)

−
(
2ρεII + (1− ρ)(1− εI)εII

)
(c+m)γ−α

φ
− (1− ρ)(1− εI)εIImα

φ

− (1− ρ)(1− εI)(1 + εI)c
γ−α
φ

+ 2ρεII(c+m)γ−α
φ

+ 2(1− ρ)(1− εI)cγ−αφ
=(1− εI)(1− ρ)

(
1− γ + c(γ − α)− εIImγ

φ

)
> 0,

where the inequality follows from Condition 1. We conclude that in this case the
planner always opts for f ∗.
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• γ−α−εIIα < 0 and ρ ≤ ρ̄: In this case f ∗1 = 0 (implying that F1(f ∗1 ) = 0) and f ∗0 = γ
φ
.

Denote the total welfare generated if the planner uses f ∗ when γ − α− εIIα ≥ 0 by
W(f ∗). Then the welfare difference when γ − α− εIIα < 0 can be written as

∆ =W(f ∗)−W(f ∗0 ) + F1(γ−α−εIIα
φ

),

where F1(γ−α−εIIα
φ

) < 0. If ρ = 0, then the welfare difference becomes

∆(0) =− (1 + εI)
(
1− γ + c(γ − α)− εII

φ
m(γ − α)

)
+ 2εII(c+m)α

φ
− (1− εI)εIImα

φ

+ (1− εI)cγ−α−εIIαφ

<− (1 + εI)
(
εII
φ

(c+m)γ + c(γ − α)− εII
φ
m(γ − α)

)
+ 2εII(c+m)α

φ
− (1− εI)εIImα

φ

+ (1− εI)cγ−α−εIIαφ
= −εIεIIcγ−αφ < 0.

Evaluating the difference ∆ at ρ = ρ̄ gives us

∆(ρ̄) =(1− εI)εII(c+m)α
φ
− (1− ρ̄)(1− εI)εIImα

φ

+ ρ̄εII(c+m)γ−α−εIIα
φ

+ (1− ρ̄)(1− εI)cγ−α−εIIαφ

=ρ̄(1− εI)εII(c+m)α
φ

+ ρ̄εII(c+m)γ−α−εIIα
φ

+ (1− ρ̄)(1− εI)cγ−αφ
=ρ̄εII(c+m)α + ρ̄εII(c+m)γ−α

φ
+ (1− ρ̄)(1− εI)cγ−αφ > 0,

where we used φ = 1− εI − εII to establish the last equality. Differentiating ∆ with
respect to ρ yields

∆′(ρ) =(1 + εI)
(
1− γ + c(γ − α)− εII

φ
m(γ − α)

)
+ (1− εI)εIImα

φ

+ εII(c+m)γ−α−εIIα
φ

− (1− εI)cγ−α−εIIαφ

=(1 + εI)
(
1− γ + c(γ − α)− εII

φ
m(γ − α)

)
+ εII(c+m)α + εIIm

γ−α
φ
− c(γ − α)

=(1 + εI)(1− γ) + εIc(γ − α)− εIεIImγ−α
φ

+ εII(c+m)α > 0,

where the inequality is a consequence of Condition 1. We conclude that W(f ∗) >
W(f ∗0 ) if ρ ∈ (`0, ρ̄] for some lower bound `0 ∈ (0, ρ̄).

• γ − α− εIIα < 0 and ρ > ρ̄: The welfare difference now reads

∆ =W(f ∗)−W(f ∗0 ) + F1(γ−α−εIIα
φ

) = (1− εI)(1− ρ)
(
1− γ + c(γ − α)− εIImγ

φ

)
+ ρεII(c+m)γ−α−εIIα

φ
+ (1− ρ)(1− εI)cγ−α−εIIαφ

.

Differentiating ∆ with respect to ρ results in

∆′(ρ) =− (1− εI)
(
1− γ + c(γ − α)− εIImγ

φ
+ cγ−α−εIIα

φ

)
+ εII(c+m)γ−α−εIIα

φ
.

We want to show that ∆′(ρ) < 0. Because εII(c+m)γ−α−εIIα
φ

< 0, it suffices to prove

that χ := 1 − γ + c(γ − α) − εIImγ
φ

+ cγ−α−εII
φ

> 0. Using the fact that γ > α and
Condition 1 one obtains:

χ > 1− γ + c(γ − α) + cγ−α
φ
− εII(c+m)γ

φ
> c(γ − α) + cγ−α

φ
> 0.
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So, ∆′(ρ) < 0. The analysis of the case γ − α − εIIα < 0 and ρ ≤ ρ̄ revealed
that ∆(ρ̄) > 0. Since limρ↓ρ̄ ∆(ρ) = ∆(ρ̄) > 0 and ∆′(ρ) < 0 for ρ ∈ (ρ̄, 1], we
conclude thatW(f ∗) >W(f ∗0 ) if ρ ∈ [ρ̄, u) for some upper bound u ∈ (ρ̄, 1]. Because
∆(1) = εII(c+m)γ−α−εIIα

φ
< 0, u is less than 1.

The analysis of the four cases reveals that the planner maximizes total welfare by using
the menu f ∗ if ρ ∈ (ρ̌, ρ̂), where ρ̌ is either `+ or `0 and ρ̂ is either 1 or u.

Details regarding (15)
If δL = 1, then (10) becomes

CL = γ − α + εII(f + βĈL) + (1− εII)βCL ⇔ CL =
γ − α + εIIf + εIIβĈL

1− β(1− εII)
,

from which one infers using (14) that

ĈL − CL =
(1− β)ĈL − (γ − α)− εIIf

1− β(1− εII)
=

εII(
γ
φ
− f)

1− β(1− εII)
.

Consequently:

γ − α ≤ φf + φβ(ĈL − CL)⇔ φf ≥ (γ − α)− β εII(γ − φf)

1− β(1− εII)
⇔ φf ≥ γ − α− β

1−β εIIα.

Substituting δH = 0 in (12) yields

CH = (1− εI)(f + βĈH) + εIβCH ⇔ CH =
(1− εI)(f + βĈH)

1− βεI
.

Combining the last equality with (14) results in

ĈH − CH =
(1− β)ĈH − (1− εI)f

1− βεI
=

(1− εI)(γφ − f)

1− βεI
.

Therefore:

γ > φf + φβ(ĈH − CH)⇔ γ > φf + β
(1− εI)(γ − φf)

1− βεI
⇔ φf < γ.

Proof of Proposition 3
If the planner opts for graduated punishment, then she sets φf ∗ = max{γ−α− β

1−β εIIα, 0}.
We first derive the associated per-period welfare without the social costs of administering
punishments. In each period all low-cost types (a fraction ρ of the population) as well as
the high-cost types in q̂ (a fraction (1− q)− (ρ− µ) of the population) contribute. Using
Lemma 1 one obtains

(1− q)− (ρ− µ) = (1− ρ)
β(1− εI)
1− βεI

.
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The per-period welfare without the social costs of administering punishments hence equals

Ψ = ρ(1− γ + α) + (1− ρ)
β(1− εI)
1− βεI

(1− γ).

We next derive the social costs of administering punishments F∞ = F∞(f ∗, f̂ ∗). In each
period a fraction εII of the low-cost types in q and a fraction 1− εI of the high-cost types
in q receive the low punishment f ∗. Moreover, a fraction εII of the agents in q̂ receive the
high punishment f̂ ∗. Only the high-cost types in q are punished rightfully. So:

F∞ =µεII(c+m)f ∗ + (q − µ)(1− εI)cf ∗ + (1− q)εII(c+m)f̂ ∗

=
ρ(1− β)

1− η
εII(c+m)f ∗ +

(1− ρ)(1− β)

1− βεI
(1− εI)cf ∗

+
β(1− εI)(1− η)− ρβ(1− β)φ

(1− βεI)(1− η)
εII(c+m)f̂ ∗

=

(
1− (1− ρ)(1− β)

1− βεI

)
εII(c+m)f̂ ∗ − ρ(1− β)

1− η
εII(c+m)D

+
(1− ρ)(1− β)

1− βεI
(1− εI)c(f̂ ∗ −D)

=

(
εII +

(1− ρ)(1− β)φ

1− βεI

)
cf̂ ∗ +

(
εII −

(1− ρ)(1− β)εII
1− βεI

)
mf̂ ∗

−
(

(1− β)εII
1− η

− (1− ρ)(1− β)εII
1− η

)
mD −

(
(1− β)εII

1− η
+

(1− ρ)(1− β)2φ

(1− η)(1− βεI)

)
cD,

where the second equality follows from Lemma 1 and D := f̂ ∗ − f ∗ is either
α+ β

1−β εIIα

φ
=

1−η
(1−β)φ

α or 0. Of course, f̂ ∗ = γ
φ
.

The per-period welfare if graduated punishments are used is W∞ = Ψ− F∞. We have
to compare this figure with W (f ∗0 ), the per-period welfare if the single punishment f ∗0 is
used. Let us now analyze the difference ∆∞ = ∆∞(ρ) := W∞ −W (f ∗0 ) for the four cases
that require attention:

• γ − α− β
1−β εIIα ≥ 0, ρ ≤ ρ̄: In this case D = 1−η

(1−β)φ
α and W (f ∗0 ) = W (γ

φ
). Hence:

∆∞ =− (1− ρ)(1− β)

1− βεI
(1− γ)− εIIcγφ −

(1− ρ)(1− β)

1− βεI
cγ − εIImγ

φ

+
(1− ρ)(1− β)

1− βεI
εIIm

γ
φ
− (1− ρ)εIIm

α
φ

+ εIIm
α
φ

+
(1− ρ)(1− β)

1− βεI
cα

+ εIIc
α
φ

+ εII(c+m)γ
φ

=− (1− ρ)(1− β)

1− βεI

(
1− γ + c(γ − α)− εII

φ
m(γ − α)

)
− (1− ρ)β(1− εI)

1− βεI
m εII

φ
α + (c+m) εII

φ
α.
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Observe that ∆∞ is increasing in ρ. Furthermore:

∆∞(ρ̄) =− 1− β
1− βεI

(c+m) εII
φ
α− (1− ρ̄)β(1− εI)

1− βεI
m εII

φ
α + (c+m) εII

φ
α

=
β(1− εI)
1− βεI

(
(c+m) εII

φ
α− (1− ρ̄)m εII

φ
α
)
> 0.

We conclude that W∞ > W (f ∗0 ) if ρ ∈ (`+, ρ̄] for some lower bound `+ ∈ [0, ρ̄). One
easily verifies that `+ = 0 for β sufficiently close to 1.

• γ − α − β
1−β εIIα ≥ 0, ρ > ρ̄: We now have D = 1−η

(1−β)φ
α and W (f ∗0 ) = W (γ−α

φ
).

Consequently:

∆∞ =

(
1− 1− β

1− βεI

)
(1− ρ)(1− γ)− εIIcγφ −

(1− ρ)(1− β)

1− βεI
cγ − εIImγ

φ

+
(1− ρ)(1− β)

1− βεI
εIIm

γ
φ
− (1− ρ)εIIm

α
φ

+ εIIm
α
φ

+
(1− ρ)(1− β)

1− βεI
cα

+ εIIc
α
γ

+ ρ εII
φ

(c+m)(γ − α) + (1− ρ)1−εI
φ
c(γ − α)

=

(
1− 1− β

1− βεI

)
(1− ρ)(1− γ)− (1− ρ)(1− β)

1− βεI
c(γ − α)

+
(1− ρ)(1− β)

1− βεI
εII
φ
mγ − (1− ρ) εII

φ
mγ − (1− ρ)c(γ − α)

=
(1− ρ)β(1− εI)

1− βεI

(
1− γ + c(γ − α)− εII

φ
mγ
)
> 0,

where the inequality follows from Condition 1. So, W∞ > W (f ∗0 ) for all ρ ∈ (ρ̄, 1].

• γ − α− β
1−β εIIα < 0, ρ ≤ ρ̄: In this case D = γ

φ
and W (f ∗0 ) = W (γ

φ
). Therefore:

∆∞ =− (1− ρ)(1− β)

1− βεI
(1− γ)− εIIcγφ −

(1− ρ)(1− β)

1− βεI
cγ − εIImγ

φ

+
(1− ρ)(1− β)

1− βεI
εIIm

γ
φ
− (1− ρ)(1− β)

1− η
εIIm

γ
φ

+
1− β
1− η

εIIm
γ
φ

+
(1− ρ)(1− β)2

(1− η)(1− βεI)
cγ +

1− β
1− η

εIIc
γ
φ

+ εII(c+m)γ
φ

=− (1− ρ)(1− β)

1− βεI
(1− γ)− (1− ρ)β(1− β)εII

(1− η)(1− βεI)
cγ

− (1− ρ)β(1− β)εII
(1− η)(1− βεI)

mγ +
1− β
1− η

εII
φ

(c+m)γ

=
1− β

1− βεI

(
−(1− ρ)(1− γ)− (1− ρ)βεII

1− η
(c+m)γ +

1− βεI
1− η

εII
φ

(c+m)γ

)
.
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Clearly, ∆∞ is increasing in ρ. Using Condition 1 one infers that:

∆∞(0) =
1− β

1− βεI

(
−(1− γ)− βεII

1− η
(c+m)γ +

1− βεI
1− η

εII
φ

(c+m)γ

)
=

1− β
1− βεI

(
−(1− γ) + εII

φ
(c+m)γ

)
< 0.

We now prove that ∆∞(ρ̄) > 0, i.e. that

ω(ρ̄) := −(1− ρ̄)(1− γ)− (1− ρ̄)βεII
1− η

(c+m)γ +
1− βεI
1− η

εII
φ

(c+m)γ > 0.

Since
d(1− ρ̄)

dα
=

εII
φ

(c+m)(1− γ + cγ − εII
φ
mγ)(

1− γ + c(γ − α)− εII
φ
m(γ − α)

)2 > 0

and ω′(ρ̄) < 0, we have that ω(ρ̄) > ω(limα→γ ρ̄). In other words, replacing α by its
upper bound γ in the expression for ρ̄ yields a lower bound for ω(ρ̄). Using the fact
that

lim
α→γ

(1− ρ̄) =

εII
φ

(c+m)γ

1− γ
one obtains

ω(ρ̄) >− εII
φ

(c+m)γ −
εII
φ

(c+m)γ

1− γ
× βεII

1− η
(c+m)γ +

1− βεI
1− η

εII
φ

(c+m)γ

= εII
φ

(c+m)γ

(
−1− βεII

(1− η)(1− γ)
(c+m)γ +

1− βεI
1− η

)
> εII

φ
(c+m)γ

(
−1− βφ

1− η
+

1− βεI
1− η

)
= 0,

where we used Condition 1 to establish the second inequality. We conclude that
W∞ > W (f ∗0 ) if ρ ∈ (`0, ρ̄] for some lower bound `0 ∈ (0, ρ̄).

• γ − α− β
1−β εIIα < 0, ρ > ρ̄: We now have D = γ

φ
and W (f ∗0 ) = W (γ−α

φ
). Hence:

∆∞ =(1− ρ)(1− γ)− (1− ρ)(1− β)

1− βεI
(1− γ)− εIIcγφ −

(1− ρ)(1− β)

1− βεI
cγ − εIImγ

φ

+
(1− ρ)(1− β)

1− βεI
εIIm

γ
φ
− (1− ρ)(1− β)

1− η
εIIm

γ
φ

+
1− β
1− η

εIIm
γ
φ

+
(1− ρ)(1− β)2

(1− η)(1− βεI)
cγ +

(1− β)εII
1− η

cγ
φ

+ ρ εII
φ

(c+m)(γ − α) + (1− ρ)1−εI
φ
c(γ − α)

=(1− ρ)
(

1− γ + c(γ − α)− εII
φ
m(γ − α)

)
− (1− ρ)(1− β)

1− βεI
(1− γ)

− εII
φ

(c+m)α− (1− ρ)β(1− β)εII
(1− η)(1− βεI)

(c+m)γ +
(1− β)

1− η
εII
φ

(c+m)γ.
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Because γ < α + β
1−β εIIα = 1−η

1−βα, we have that

∆∞(1) = εII
φ

(c+m)

(
−α +

1− β
1− η

γ

)
< 0.

Differentiating ∆∞ with respect to ρ yields

∆′∞(ρ) =− β(1− εI)
1− βεI

(1− γ)− c(γ − α) + εII
φ
m(γ − α) +

β(1− β)εII
(1− η)(1− βεI)

(c+m)γ

<− β(1− εI)
1− βεI

εII
φ

(c+m)γ − c(γ − α) + εII
φ
m(γ − α) +

β(1− β)εII
(1− η)(1− βεI)

(c+m)γ

=− βεII
1− η

εII
φ
cγ +

1− β
1− η

εII
φ
mγ − c(γ − α)− εII

φ
mα

<− βεII
1− η

εII
φ
cγ + εII

φ
mα− c(γ − α)− εII

φ
mα = − βεII

1− η
εII
φ
cγ − c(γ − α) < 0,

where the first inequality follows from Condition 1 and the second one from the fact
that γ < 1−η

1−βα. Because ∆∞(ρ̄) > 0 (see the previous bullet point) and ∆∞ is

continuous in ρ, we conclude that W∞ > W (f0∗) if ρ ∈ (ρ̄, u) for some upper bound
u ∈ (ρ̄, 1).

The analysis of the four cases reveals that the planner maximizes per-period welfare by
using the pair of punishments (f ∗, f̂ ∗) if ρ ∈ (ρ̌∞, ρ̂∞), where ρ̌∞ is either `+ or `0 and ρ̂∞
is either 1 or u.
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