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Abstract

Using Danish register data we observe that, for households living in rental hous-

ing, the housing expenditure share is negatively correlated with income, positively

correlated with rent per squared meter, and displays significant cross sectional dis-

persion. We find that the life cycle model accounts for the average patterns in the

data remarkably well, and that income uncertainty is not enough to generate the

observed dispersion in the housing expenditure share.
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1 Introduction

Using Danish register data we observe that, for households living in rental housing, the

housing expenditure share is negatively correlated with income, positively correlated with

rent per squared meter, and displays significant cross sectional dispersion.

If households make expenditure decisions based on the present discounted value of

income and assets, the variation of current income over the life cycle should generate a

negative relationship between income and the expenditure share. The data shows that

on average over the life cycle this does happen and in fact the life cycle model matches

average data remarkably well.1 The theory is less clear regarding the relationship between

the rent and the expenditure share.

Non zero correlations between the expenditure share and income or prices are also

present at any given age across households. This cross sectional dispersion is harder to

replicate. Idiosyncratic income uncertainty goes some way towards generating dispersion

of the expenditure share. Income path dispersion, reflecting educational differences among

other factors, however, does not help in generating the observed dispersion in expenditure

shares.

2 Income, Rent and the Housing Expenditure Share

In this section, we present properties of Income, Rents and Expenditures Shares for renters

in Denmark. The overall average housing expenditure share for all the households ob-

1The result is similar to the result obtained by Ejrnaes and Browning (20**).
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served in 2010 is 0.23.2 Table 1 shows the mean, µ, standard deviation, σ, and the upper

triangle of the correlation, ρ, matrix of: income, rent per squared meter, house size in

squared meters, and the expenditure share.

Table 1: Data Moments 2010

ρ
µ σ σ/µ Income H-area Rent

H-Share 0.230 0.143 0.624 -0.625 0.094 0.362
Income 296 173 0.585 1 0.283 -0.008
H-area 73.0 23.7 0.325 1 -0.260
Rent p/m2 741 228 0.308 1
nobs 248710, ages 19 to 91 only.

As stated above, the housing expenditure share is negatively correlated with income (-

0.625) and positively correlated with rent per squared meter (0.362). At first glance these

facts are unsurprising since the expenditure share is given by rent per squared meter

times size divided by income, e = rs/y. But an accouting identity is not the only way

to evaluate data. For example, a static Cobb-Douglas utility function predicts constant

expenditure shares, something which is thought to apply to the housing share by Davis

and Ortalo-Magne (2009).

3 The life cycle

The life cycle may be at work. Over the life cycle, income and expenditure shares will be

negatively correlated even with Cobb-Douglas utility.

Consider a frictionless perfect foresight life cycle model, with period utility given by

2The 1996, 2001, and 2006 samples display the same patterns discussed here. We have data on
households where the oldest member is aged from 16 to 108 but we use only households where the oldest
member is aged 19 to 91 inclusive. For these ages we have 1000 or more observations per age. The
moments and data patterns are virtually identical if we use the entire sample.
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U = α log(c)+(1− α) log(s), and period budget constraint ct = (1 + i) at−at+1 +yt−rtst,

where rt is rent per squared meter (per unit) and st is the size of the house.3 The discount

factor is 1/(1+ρ). We obtain the Euler equation ct+1 = ctδ, where δ = (1+i)/ (1 + ρ), and

the optimality condition for housing rtst = (1− α) ct/α. This implies rt+1st+1 = δrtst.

We can now replace these relationships in the budget constraint to obtain:

rtst
α

(1− α)
= ct = (1 + i) at − at+1 + yt − rtst

and then compute the present discounted sum of all budget constraints over the life cycle:

rjsj

(1 + i)j−1 = r1s1

(
δ

1 + i

)j−1

= (1− α)
(1 + i) aj − aj+1 + yj

(1 + i)j−1

for j = 1 : T . Define β = 1/(1 + i) and ∆ = βδ, and summing over all j’s we obtain

r1s1 = (1− α)

[
1−∆

1−∆T

] [
a1 − aT+1β

T

β
+ Y

]

where Y is the present discounted value (PDV) of all income flows and r1s1 is total

expenditure on housing in the first age of life.

We now make use of this expression in conjunction with the observed average expen-

diture share (E = 0.23) to find the value of α. In fact, we have a degree of freedom since

we do not know initial or terminal assets. We make one consistency assumption that in

3House here stands for whatever type of home the household lives in.
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a stationary equilibrium a1 = aT+1 = ā. We then write

r1s1 = (1− α)

[
1−∆

1−∆T

]
W (ā)

where wealth is given by W (ā) = ā
(
1/β − βT−1

)
+Y . Now, to match the average expen-

diture share, we use the number of households and average income by age to construct

r1s1

y1

n1

n
+
r2s2

y2

n2

n
+ ...+

rT sT
yT

nT
n

= E

which turns into

(1− α)
[

1−∆
1−∆T

]
W (ā)

n

[
n1

y1

+
n2

y2

δ + ...+
nT
yT
δT−1

]
= E

and it is clear that any value we assume for ā will only result in a compensating value of α.

The size of r1s1 is not affected by it, and the evolution of rjsj over the life cycle depends

only on δ. The life cycle path of the expenditure share, rjsj/yj, is also not affected by it.

The value of ā is therefore set to a default value of zero.

Consider the case where ρ = i. Nothing much changes above except that δ = 1

and ∆ = β. Consumption is then a constant over the life cycle and so is total housing

expenditure. Expenditure shares out of current income will then necessarily be negatively

correlated with income itself.
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3.1 Data

To match life cycle facts we focus on age specific averages in the data. This creates a life

cycle of averages rather than the average life cycle (as we do not follow households over

lengths of time).4 The average data correlate differently from the entire sample. Table

2 below shows the relationship between the averages where we see that the expenditure

share is now almost perfectly correlated with income, while the correlation with rent drops

down to 0.1392.

Table 2: Life cycle Correlation of age specific means 2010

ρ
Income H-area Rent

H-Share -0.9568 0.1514 0.1392
Income 1 0.0129 -0.1006
H-area 0.0129 1 -0.6963
Rent m2 -0.1006 -0.6963 1
nobs 73, ages 19 to 91 only

The implications of the life cycle model described above are clear in our data. Figure

1 shows the hump-shaped pattern of income, the slightly concave pattern of the house

size, the mainly flat pattern of rents, and the convex curve for the housing expenditure

share which strongly mirrors the income curve.5 Note that in the model rents affect only

house size, not the expenditure share.

[FIGURE 1 HERE]

4Since our data contains only renters it has a strong sample selection across different ages. We discuss
this below.

5Figure 1 shows age specific sample means. Rents and house size are normalized to fit the scale of the
expenditure share and income is measured in the right hand side axis.
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Figure 1:
Income, Size, Rent, and Expenditure Share

Age specific means, 2010

3.2 Matching the data.

How well does the model described above match the data? Figure 2 shows what we get.

The average percentage absolute deviation between the blue and the red line is 5.61% and

the median deviation is 4.23%. The share in the model is off on average by 0.0126. The

difference between the discount rate and the interest rate matters for the location of the

expenditure share curve. It turns out that setting ρ = i yields the best fit.6

[FIGURE 2 HERE]

The model fits the data well because the data so determines it. The data correlation

coeffi cient between average income by age and the average expenditure share by age is

-0.9568, nearly minus one, while this correlation in the model is -0.9861 (it is also the

6We minimize the average percentage absolute deviation between the life cycle expenditure share (ages
19 to 91) in the data and in the model.
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Figure 2:
Housing Expenditure Share, Model and Data

correlation between Y and 1/Y).7 Clearly, a value so close to minus one is only attainable

if the expenditure on housing is all but constant over the life cycle.8

If we add a trend to the share with a factor 1.0043, we can hit the correlation exactly.

That is, if we set ρ = (1 + i)(1.0043) − 1, the model generates exactly the correlation

value -0.9568. The fit of the expenditure share curve is, however, worse, with an average

percentage absolute deviation between the two curves of 10.56%

In the model the evolution of the rent is irrelevant since it is exogenous and only

total housing expenditure matters. This implies rent in the model is identical to rent

in the data (as is the case for income). Therefore the correlation between rent and the

7In logs these values are -0.9762 and -1, respectively.
8These averages do not yield the average life cycle because the "average" agent in the sample renting

at age 20 is not the average agent renting at 40. The number of observations by age (see figure 3) sheds
light on the quantity of sample selection taking place, although in itself this does not imply bias.
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expenditure share will be also very close to the data, although it does not carry any

additional information relative to the relationship between income and the expenditure

share. Of course, the averages in the data do not have to be completely consistent in the

sense that average size times average rent divided by average income should not necessarily

equal the average expenditure share (due to Jensens’s inequality).

4 The cross section

The life cycle, however, hides important features of the data. Figure 3 shows correlation

coeffi cients computed by age for income, rents, and expenditure shares, for the year 2010.9

[FIGURE 3 HERE]

Figure 3:
ρ(e,y)<0, ρ(e,r)>0, ρ(r,y)=0, 2010 Data

9The figure shows five-age-averages (21 to 25, 26 to 30, etc) of age specific correlations, with the
average assigned to the mid point marked in the graph (age 23, 28, 33, etc).
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While we see some variation over the life cycle, the main feature of this figure is the

relative stability of all correlations across age. Income and the expenditure share are

negatively correlated, the rent and the expenditure share are positively correlated, and

Income and rents are uncorrelated. The life cycle is not the driving force behind these

correlations.

This figure also helps give some perspective of the impact of sample selection. One

possible type of selection is that young agents in this data are credit constrained (they eat

too little, but still cannot borrow to buy houses), while the surviving old are the impatient

(they eat too much so they never buy houses). Somewhere in this selection is an idea that

adult patient unconstrained households who by chance are renting have some correlation

between income and rent while impatient ones do not. It is unclear how that comes out

of our model.

The house size is also correlated with the other 3 variables. We see that ρ (s, y) > 0 and

ρ (s, r) > 0 at every age as expected from a model with a downward sloping demand. The

correlation ρ (s, e) is more interesting. It is not significant from around age 60 onwards and

at early ages. It mirrors the correlation with income because income and the expenditure

share mirror each other.10

Finally, the data shows substantial within-age dispersion in the expenditure share.

This is the endogenous variable we are mostly interested and its dispersion is one fact we

aim to explain.

Can we extend the previous model so that we can track the properties of the cross

10It does have, however, a positive hump shaped life cycle profile for middle ages, perhaps reflecting
family composition....
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Figure 4:
Correlation of House Size with Income, Rent, and the Expenditure Share, 2010

section as well as the properties of the mean over the life cycle?

4.1 Income Heterogeneity

The obvious place to start is with income. Households of different educational levels have

markedly different life cycle average paths. In our data we have

If we go back to our algebra above we have

r1s1 = (1− α)

[
1−∆

1−∆T

]
W (ā)

and keeping ā = 0 for all agents, we have that W (ā) = ā
(
1/β − βT−1

)
+ Y = Y .

changes. So, if there are permanent differences in the net present value of income they
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Figure 5:
Age Specific Percentiles of the Expenditure Share, 2010

will show up in wealth. Nevertheless

r1s1

W (ā)
= (1− α)

[
1−∆

1−∆T

]

is still invariant. Therefore income path heterogeneity will not succeed in generating cross

sectional dispersion in the expenditure share.

4.2 Taste Heterogeneity

In our model rents are exogenous, so the extension of the life cycle model into a general

equilibrium environment would yield a single price. Yet we see cross sectional variation

in the price. Not only that, this cross sectional variation is reasonably stable over the life

cycle.
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Figure 6:
Percentiles of the income distribution by age

No doubt this cross sectional variation occurs because not all houses are the same. We

now introduce this characteristic extending the previous model to include housing quality.

Households have an idiosyncratic preference for housing quality, µ (q), which has

a counterpart in the rental rate, which now becomes also a function of quality, r (q).

Specifically we write U = α log(c) + (1− α) log(µs), and period budget constraint ct =

(1 + i) at−at+1 +yt−rt(q)st, where rt(q) is rent per squared meter as a function of quality.

We specify the functions µ = eγq, and r = r0(1 + q). In the function µ, the parameter

γ is household specific, and has an exogenous constant distribution over the population.

The first order condition for quality then yields q = (1− γ) /γ. Replacing q one obtains

r = r0/γ, and µ = e1−γ, where r0 is the market clearing component of price, and where in

order for the rent to be positive we must have that γ > 0. Note also that in this solution

the rent paid is independent of income and assets as suggested by the lack of correlation
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Figure 7:
Percentiles of the rent distribution by age

between these two variables we observe in the data.

Will housing quality solve our problem? Yes and no. We still have

r1s1

W (ā)
= (1− α)

[
1−∆

1−∆T

]

which means we are still not able to generate cross sectional dispersion in the expenditure

share. But, because the price depends on γ, size will depend on γ too. So, housing quality

and price dispersion will help us with quantity dispersion. But the housing share is still

not affected.
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4.3 Uncertainty

So how can we generate dispersion in the expenditure share? An immediate look at the

previous expression suggests we need to affect its right hand side. This means either

heterogeneity in (ρ, α, i) or the need for more general utility such as the CES function

used in Ejarque and Christensen (2013). Rather than tampering with preferences we look

at uncertainty in income and/or rents.

Utility is given by U = α log(c) + (1− α) log(µs), and the period budget constraint is

ct = (1 + i) at−at+1 +yt−rtst, where rt is rent per squared meter (per unit) as a function

of quality and st is the size of the house.

The optimality condition for housing size yields rtst = (1− α) ct/α. This implies we

can eliminate housing and rewrite utility as

U = α log(α) + (1− α) log

(
1− α
rt

)
+(1− α) log (µ) + log (ψt)

where ψt = (1 + i) at − at+1 + yt. We can then write ct = αψt and rtst = (1− α)ψt, so

that total current expenditure is given by ψt = rtst + ct.

Given that the current rent appears only in an autonomous term, and is exogenous,

savings and assets will move to accomodate income variations only. The Euler equation

is

1

ψt
=

1 + i

1 + ρ
Eyt+1

(
1

ψt+1

)

If income does not vary too much expenditure should be almost flat over the life cycle (if
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ρ = i).11

The same is then true for rtst. Therefore, variations in stochastic rent will be absorbed

by variations in housing size only. Optimal savings are independent of both the shock in

rt and the taste heterogeneity γ. However, exactly because rtst is flat, income variations

will translate into variations of the expenditure share.

Note finally that while the left hand side of rtst = (1− α)ψt depends on the quality

index, the right hand side, (1− α)ψt, does not. Taste heterogeneity does not add to

the cross sectional dispersion of the expenditure share.12 Neither does heterogeneity of

the income path (reflecting educational differences for example). But the observed taste

heterogeneity does generate - through this model - almost all observed size heterogeneity.13

However, we do not require taste heterogeneity to generate house size dispersion. The

dispersion of income given a single rent implies dispersion in expenditure which translates

one for one into dispersion in house size. In fact, given the way the values of γ are obtained

- by normalizing all rents by the maximum rent observed - tastes heterogeneity actually

compresses the dispersion in house sizes generated by income, bringing it more in line

with the data.

How much dispersion in the expenditure share can income uncertainty generate? The

pattern w eobtain depends on the peristence of shocks. With a serial correlation coeffi cient

of 0.95, if we introduce enough uncertainty to match the income dispersion between the

90th and 10th percentiles in the age interval 20 to 60, we obtain around one third of

11In case ρ = i and dividing both sides by α we obtain 1/ct = Eyt+1 (1/ct+1).
12Rent shocks also do not have an effect here, but that is because there are no frictions. With frictions

(moving costs) rent shocks will add to the dispersion of the expenditure share.
13We measure this by killing the income shock. In this case there is a single path of expenditure. The

heterogeneity in γ is constructed from the quantiles of the data on rent/max(rent). The five values of
gama associated with the 10, 25, 50, 75, and 90th percentiles then generate 5 curves for house sizes.
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the observed dispersion (90/10 ratio) in the expenditure share.14 This dispersion also

increases with age as the possibilities to smooth income shocks also fall with age.

This pattern changes with the level of serial correlation. If we have zero serial corre-

lation in the shock process we do not generate the same dramatic increase in dispersion

with age. Figure XX shows the results with iid shocks. They actually match the data

14But this amount of dispersion is the result of unrecognizable individual life cycle income paths. It is
clear that the dispersion in observed income is largely path (education) dispersion rather than the result
of idiosyncratic uncertainty over life in a given path.
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better.

5 Conclusion

The life cycle model is able to reproduce well the average patterns of rental housing

expenditure observed in the data. With income uncertainty it is also able to generate

some of the dispersion observed in the housing expenditure share, particularly with iid

shocks.

Heterogeneity in income paths does not affect the housing expenditure share. Nei-

ther does heterogeneity in preferences for housing quality, although it does generate the

observed dispersion in house sizes.
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5.1 Life cycle Model 2, CES

Would a more general model allow us to obtain a more meaningfull relationship be-

tween rent, income, and the expenditure share? WHAT DOES MORE MEANINGFULL

MEAN?

Consider now the following period utility with minimum housing and housing quality.

U =
[
αcθ + (1− α) (µ (q) s− x0)θ

] η
θ

= M
η
θ

and budget constraint ct = (1 + i) at − at+1 + yt − rt (q) st. We specify the functions

µ = eγq, and r = r0(1 + q), where q denotes quality, and γ is a potentially household

specific parameter that defines preference for quality.

First order conditions are

M
η
θ
−1

t cθ−1
t =

1 + i

1 + ρ
M

η
θ
−1

t+1 c
θ−1
t+1

rq
r

=
µq
µ
⇒ q =

1− γ
γ

and [
α

1− α
rt
µt

] 1
1−θ

≡ Zt ≡ Z =
ct

µtst − x0

Note now that t indexes for age, and that we do not have time variation. Furthermore,

r = r(q) and µ = µ(q) have no time (or age) variation either. Therefore Z is a constant
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over the life cycle. We can then rewrite M

M = cθ
[
α + (1− α)Z−θ

]

and replace it in the Euler equation

[
cθt
[
α + (1− α)Z−θ

]] η
θ
−1
cθ−1
t =

1 + i

1 + ρ

[
cθt+1

[
α + (1− α)Z−θ

]] η
θ
−1
cθ−1
t+1

cη−1
t =

1 + i

1 + ρ
cη−1
t+1

and again

ct+1 =
[
δ
−1
1−η

]
ct = δ0ct

Now we go back to the budget constraint. This is now a bit more involved. Define

β = 1/(1 + i) and ∆0 = βδ0. The PDV of consumption is given by

c1 + βc2 + ... = c1 + c1∆0 + ...+ c1∆T−1
0 = c1

1−∆T
0

1−∆0

= c1Ω

But now the budget constraint is harder to rewrite because

c2

c1

= δ0 =
µs2 − x0

µs1 − x0
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and we need a recursion

rs2 = δ0rs1 + (1− δ0)
r

µ
x0

rs3 = δ2
0rs1 + (1 + δ0) (1− δ0)

r

µ
x0

rs4 = δ3
0rs1 +

(
1 + δ0 + δ2

0

)
(1− δ0)

r

µ
x0

so that the NPDV of housing expenditures is a bit more involved. The first set of terms

adds to rs1Ω. The second set of terms adds to a less elegant object which we rename

here:

Γ =

[
(1− δ0)

r

µ
x0

] β + β2 (1 + δ0) + β3
(
1 + δ0 + δ2

0

)
+...+ βT−1

(
1 + δ0 + ..+ δT−2

0

)


Note that the sum does not involve the parameter θ. The path of expenditures will

not depend on substitutability within the utility function. The relative level of these

expenditures will.

This recursion does highlight one point. Assume consumption grows with age. Then,

if x0 is small, housing expenditures will also grow with age. But if x0 is big they will fall

with age. This is because a big value of x0 may imply too much housing expenditure at

young ages so that the otherwise optimally increasing pattern of housing expenditure is

no longer feasible.

ct =
[
Z
µ

r

]
rtst − Zx0 = (1 + i) at − at+1 + yt − rtst
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or again

rtst =
Zx0 + (1 + i) at − at+1 + yt

Z µ
r

+ 1

and finally we are ready to compute present discounted values.

rs1Ω + Γ =

[
Zx0

Z µ
r

+ 1

]
1− βT

1− β +
1

Z µ
r

+ 1
W (ā)

and obtain

rs1 =

[
Zx0
Z µ
r

+1

]
1−βT
1−β − Γ + 1

Z µ
r

+1
W (ā)

Ω

If we set x0 = 0 this expression simplifies to:

rs1 =
Ω

Z µ
r

+ 1
W (ā)

and for now this is what we look at.

Note that we have three utility parameters (α, θ, η), and one observed value of the

expenditure share to work with. The parameters (α, θ) are only present inside of Z.

Now that we have an expression for rs1, we can again compute the calibration expres-

sion for the average expenditure share in the data, which will pin down one parameter.

6 Tables and Figures

24



Table 3: Distribution of House Sizes

1996 2001 2006 2010
R U R U R U R U

00 to 39 m2 10583 315 9782 680 9097 813 8630 887
40 to 59 m2 72576 759 63025 1434 60940 2666 60626 3843
60 to 79 m2 97657 4089 87654 7239 84847 10773 83494 12813
80 to 99 m2 51252 2542 46986 4900 43663 8242 42559 11371
100 to 119 m2 17415 377 15832 861 15469 2174 14855 4101
120 to 159 m2 8225 47 7526 164 7155 399 7189 983
160 to 199 m2 1600 3 1439 19 1277 11 1294 37
200 plus m2 497 1 441 2 368 3 371 7
Total N 259805 8133 232685 15299 222816 25081 219018 34042
%>99m2 10.7 5.3 10.8 6.8 10.9 10.3 10.8 15.1
Number of observations in regulated (R) and unregulated (U) housing, by size.
Average size is around 75m2. Around 4% of observations under 40m2.
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