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1 Introduction

Government bond yields with different maturities and macroeconomic variables are both character-

ized by a high degree of comovement, indicating that the bulk of their dynamics is driven by a few

common forces. Three common factors, usually interpreted as the level, slope and curvature of the

yield curve, can explain changes and shift of the entire cross-section of yields, see Litterman and

Scheinkman (1991). Although there is less consensus on the number and nature of macroeconomic

factors, two factors, one nominal and one real, summarize well the dynamics of a large variety of

macroeconomic indicators for the United States, see Sargent and Sims (1977), Giannone, Reichlin

and Sala (2005) and Watson (2005).

Macroeconomic factors and yield curve factors are also characterized by a strong interaction.

The short end of the yield curve moves closely to the policy instrument under the direct control

of the central bank, which responds to changes in inflation, economic activity, or other economic

conditions, see Taylor (1993). The average level of the yield curve is usually associated with the

inflation rate and the spread between long and short rates with temporary business cycles condi-

tions, see Diebold, Rudebusch and Aruoba (2006). For these reasons, macroeconomic information

have been shown to help forecasting future interest rates and excess bond returns, see Ang and

Piazzesi (2003), Mönch (2008), De Pooter, Ravazzolo and van Dijk (2007), Favero, Niu and Sala

(2012) and Ludvigson and Ng (2009).

In this paper, we aim at identifying the factors summarizing macroeconomic information that is

not spanned by the traditional yield curve factors. The economic literature so far has not addressed

this problem since in existing studies macroeconomic factors are either extracted separately from

a large set of macroeconomic indicators, see Ang and Piazzesi (2003), Mönch (2008), Favero et al.

(2012) and Ludvigson and Ng (2009), or proxied by preselected observable variables, see Dewachter

and Lyrio (2006), Diebold et al. (2006), Bianchi, Mumtaz and Surico (2009), Joslin, Priebsch and

Singleton (2010) and Wright (2011).

We estimate a macro-yield model that treats macroeconomic factors as unobservable compo-
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nents that we extract simultaneously with the traditional yield curve factors. The latter are identi-

fied by constraining the loadings to follow the smooth pattern proposed by Nelson and Siegel (1987).

More specifically, our empirical model is a Dynamic Factor Model (DFM) for Treasury zero-coupon

yields and a representative set of macroeconomic variables with restrictions on the factor loadings.

Estimation is performed using a Quasi-Maximum Likelihood approach, as proposed by Doz, Gian-

none and Reichlin (2012). This procedure is easily implementable using the Kalman smoother and

the EM algorithm. The estimator has been shown to be feasible when the number of variables is

large, and robust to non Gaussianity and to the presence of weak cross-sectional correlation among

the idiosyncratic terms. We validate the model by assessing the forecasting ability for yields and

excess returns of US government bonds.

Using monthly U.S. data from January 1970 to December 2008, we find that a significant

component of macroeconomic information is not captured by the yield curve factors and, at the

same time, is unspanned by the yield curve, in the sense that it does not affect contemporaneously

the cross-section of yields. The unspanned macroeconomic information is driven by two factors

that are well proxied by economic growth and real interest rates. These factors have substantial

predictive information for bond yields and excess bond returns, in spite of the fact that they do

not affect contemporaneously the shape of the yield curve. The macro-yields model explains up

to 55% of the variation in excess bond returns and outperforms all existing models in forecasting

bond yields and excess returns.

The paper is organized as follows. Section 2 presents the macro-yields model. Section 3 describes

the data, the estimation procedure and the information criteria used for model selection. Section

4 contains empirical results about the estimated factors, the fit of the model for yields, macro

variables and expected excess bond returns. Section 5 reports out of sample results for yields and

excess bond returns and section 6 concludes. We report in Appendix details about the estimation

procedure, the macroeconomic data, the out of sample tests used and results for the unrestricted

macro-yields model.
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2 The Macro-Yields Model

The macro-yields model that we propose is a dynamic factor model for the joint behavior of gov-

ernment bond yields and macroeconomic indicators. The cross-section of yields is described by the

traditional level, slope and curvature factors. Macroeconomic variables load on both the yield curve

factors as well as on some additional macro factors, that capture the information in macroeconomic

variables over and above the yield curve factors. In addition, these additional macro factors are

assumed to not provide any information about the contemporaneous shape of the yield curve. In

practice, the level, slope and curvature implied by the Nelson and Siegel (1987) model are assumed

to be spanned by both the bond yields and macroeconomic variables. The additional macro fac-

tors, instead, are contemporaneously loaded only by the macroeconomic variables and, thus, are

unspanned by the cross-section of yields. The joint dynamics of the factors is an unrestricted Vector

Autoregression and the idiosyncratic components follow independent univariate autoregressions. In

what follows we detail on each of the points.

More specifically, we assume that yields on bonds with different maturities are driven by three

common factors. Denoting by yt the Ny × 1 vector of yields with Ny different maturities at time t,

we have:

yt = ay + Γyy F
y
t + vyt , (1)

where F yt is a 3 × 1 vector containing the latent yield-curve factors at time t, Γyy is a Ny × 3

matrix of factor loadings, and vyt is an Ny × 1 vector of idiosyncratic components. The yield curve

factors F yt are identified by constraining the factor loadings to follow the smooth pattern proposed

by Nelson and Siegel (1987) (hereafter NS)

ay = 0; Γ(τ)
yy =

[
1

1− e−λτ

λτ

1− e−λτ

λτ
− e−λτ

]
≡ Γ

(τ)
NS , (2)

where Γ
(τ)
yy is the row of the matrix of factor loadings corresponding to the yield with maturity τ

and λ is a decay parameter of the factor loadings. Diebold and Li (2006) show that this functional
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form of the factor loadings, implies that the three yield curve factors can be interpreted as the level,

slope, and curvature of the yield curve. Indeed, the loading equal to one on the first factor, for all

maturities, implies that an increase in this factor increases all yields equally, shifting the level of

the yield curve. The loadings on the second factor are high for short maturities, decaying to zero

for the long ones. Accordingly, an increase in the second factor increases the slope of the yield

curve. Loadings on the third factor are zero for the shortest and the longest maturities, reaching

the maximum for medium maturities. Therefore, an increase in this factor augments the curvature

of the yield curve. The specific shape of the loadings depends on the decay parameter λ, which

we calibrate to the value that maximizes the loading on the curvature factor for the yields with

maturity 30 months, as in Diebold and Li (2006).

Given these particular functional forms for the loadings on the three yield curve factors, one

can disentangle movements in the term structure of interest rates into three factors which have a

clear-cut interpretation. The NS factors are just linear combinations of yields. The level factor can

be proxied by the long term yield, the slope by the spread between the long and short maturity yield

(first derivative) and the curvature by sum of the spreads between a medium and a long term yield,

and between a medium and the short term yield (second derivative), see Diebold and Li (2006).1

The parameter λ governs the exponential decay rate: a small value of λ can better fit the yield

curve at long maturities, while large values can better fit it at short maturities. This parameter

determines the maturity at which the loadings on the curvature factor reaches the maximum. Due

to its flexibility and parsimony, the NS model accurately fits the yield curve and performs well in

out-of-sample forecasting exercises, as shown by Diebold and Li (2006) and De Pooter et al. (2007).

For these reasons, fixed-income wealth managers in public organizations, investment banks and

central banks rely heavily on NS type of models to fit and forecast yield curves, see BIS (2005),

ECB (2008), Gürkaynak, Sack and Wright (2007) and Coroneo, Nyholm and Vidova-Koleva (2011).

Macroeconomic variables, are assumed to be potentially driven by two sources of co-movement,

the yield curve factors F yt and macro specific factors. Denoting by xt the Nx× 1 vector of macroe-

1Similar proxies are used by Ang, Piazzesi and Wei (2006) and Duffee (2011).
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conomic variables at time t, we have:

xt = ax + Γxy F
y
t + Γxx F

x
t + vxt , (3)

where F xt is an r × 1 vector of macroeconomic latent factors, Γxy is a Nx × 3 matrix of factor

loadings on the yield curve factors, Γxx is a Nx × r matrix of factor loadings on the macro factors,

and vxt is an Nx × 1 vector of idiosyncratic components.

The yield curve and the macroeconomic factors are extracted by estimating (1) and (3) simul-

taneously:

yt
xt

 =

 0

ax

+

ΓNS 0

Γxy Γxx


F yt
F xt

 +

vyt
vxt

 . (4)

where ΓNS are the NS restrictions in (2). F xt captures the source of co-movement in the macroeco-

nomic variables beyond the yield curve factors. In addition, the restriction Γyx = 0 ensures that, by

construction, the macroeconomic factors F xt are unspanned by the cross-section of yields as they do

not provide any information about the contemporaneous shape of the yield curve. In Appendix D

we show that this assumption holds in the data as does it not affect neither the in sample nor the

out of sample performance of the model for both yields and excess bond returns.

The joint dynamics of the yield curve and the macroeconomic factors follow a VAR(1)

F yt
F xt

 =

µy
µx

+

Ayy Ayx

Axy Axx


F yt−1
F xt−1

 +

uyt
uxt

 ,

uyt
uxt

 ∼ N
0,

Qyy Qyx

Qxy Qxx


 (5)

The idiosyncratic components collected in vt = [vyt vxt ]′ are modelled to follow independent

autoregressive processes

vt = Bvt−1 + ξt, ξt ∼ N(0, R) (6)

where B and R are diagonal matrices. These orthogonality conditions imply that the common

factors fully account for the the joint correlation of the observations. This is a straightjacket and
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arguably unrealistic assumption, but recent results on approximate factor models show that these

models are robust to the presence of limited correlations among idiosyncratic components, see Doz

et al. (2012).

Furthermore, the shocks to the idiosyncratic components of the individual variables, ξt, and

the innovations driving the common factors, ut, are assumed to be mutually independent. This

assumptions implies that the common factors are not allowed to react to variable specific shocks.

3 Estimation and Preliminary Results

3.1 Data

We use monthly U.S. Treasury zero-coupon yield curve data spanning the period January 1970

to December 2008. The bond yield data are taken from the Fama-Bliss dataset available from

the Center for Research in Securities Prices (CRSP) and contain observations on three months

and one through five-year zero coupon bond yields. The macroeconomic dataset consists of 14

macroeconomic variables, which include five inflation measures, seven real variables, the federal

funds rate and a money indicator. Appendix B contains a complete list of the macroeconomic

variables along with the transformation applied to ensure stationarity. Following Ang and Piazzesi

(2003), De Pooter et al. (2007), Diebold et al. (2006) and Mönch (2008), we use annual growth

rates for all variables, except for capacity utilization, the federal funds rate, the unemployment

rate and the manufacturing index which we keep in levels. Notice that, in the spirit of the latent

factor model literature, we include a larger dataset than the one considered in macro-yields models

with observable macro factors, e.g. Ang and Piazzesi (2003), Diebold et al. (2006) and Joslin et al.

(2010).2

2We focus on the main aggregate macroeconomic indicators since there have been extensive evidence that including
disaggregated information does not provide any important gain in forecasting, as shown by De Mol, Giannone and
Reichlin (2008), Bańbura, Giannone and Reichlin (2009) and Banbura and Modugno (2012). An alternative approach
consists in selecting the variables using statistical criteria as suggested in Boivin and Ng (2006) and Bai and Ng (2008).
However, because of co-linearity among predictors, variable selection is unstable, as the set of predictors selected is
very sensitive to minor perturbation of the data-set, such as adding new variables or extending the sample length, see
De Mol et al. (2008). For a discussion on the selection of variables see Banbura, Giannone, Modugno and Reichlin
(2012).
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3.2 Estimation

Equations (4)–(6) describe a restricted state-space model with autocorrelated idiosyncratic com-

ponents for which maximum likelihood estimators of the parameters are not available in closed

form. Conditionally on the factors, the model reduces in a set of linear regressions. As consequence

estimation can be carried using the Expectation Maximization (EM) algorithm3. The procedure

is computationally feasible for large cross-sections since the latent factors can be initialized by

principal components, which provide a good approximation of the common factors in a large cross-

section, see Doz et al. (2012). As anticipated above, this procedure is robust to miss-specification

of the empirical model for the idiosyncratic component. The estimates are also robust to deviation

from Gaussianity, see Doz et al. (2012).

For comparison, we also estimate an only-yields model, which uses only the information con-

tained in the yields. This is a restricted version of the macro-yields model in equations (4)–(6) with

Qyx = Ayx = Γxy = 0 and can hence be estimated using the same procedure.

3.3 Model Selection

The macro-yields model decomposes variations in yields and macroeconomic variables into yield

curve factors, unspanned macroeconomic factors and idiosyncratic noise. The yield curve factors

are identified as the NS factors which have a clear interpretation as level, slope and curvature.

However, the true number of unspanned macroeconomic factors is unknown. We select the optimal

number of factors using an information criteria approach. The idea is to choose the number of

factors that maximizes the general fit of the model using a penalty function to account for the loss

in parsimony.

Bai and Ng (2002) derive information criteria to determine the number of factors in approximate

factor models when the factors are estimated by principal components. They also show that their

3Using the Expectation Conditional Restricted Maximization (ECRM) algorithm is also possible to estimate λ,
but, despite the increase in the computation burden, the empirical results remain qualitatively similar to those
obtained by setting λ to the value that maximizes the loading of the the yields with maturity 30 months on the
curvature factor.
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Table 1: Model Selection

Number of factors IC∗ V

3 0.02 0.44
4 -0.03 0.31
5 -0.11 0.22
6 0.01 0.18
7 0.23 0.17
8 0.43 0.16

This table reports the information cri-
terion IC∗, as shown in (8) and (7), and
the sum of the variance of the idiosyn-
cratic components (divided by NT ), V ,
when different numbers of factors are
estimated.

IC3 information criterion can be applied to any consistent estimator of the factors provided that the

penalty function is derived from the correct convergence rate. For the quasi-maximum likelihood

estimator, Doz et al. (2012) show that it converges to the true value at a rate equal to

C∗2NT = min

{√
T ,

N

logN

}
(7)

where N and T denote the cross-section and the time dimension, respectively. Thus, a modified

Bai and Ng (2002) information criterion that can be used to select the optimal number of factor

when estimation is performed by quasi-maximum likelihood is as follows

IC∗(s) = log(V (s, F̂ ∗(s))) + s g(N,T ), g(N,T ) =
logC∗2NT
C∗2NT

(8)

where s denotes the number of factors, F̂(s) are the estimated factors and V (s, F̂ ∗(s)) is the sum

of squared idiosyncratic components (divided by NT) when s factors are estimated. The penalty

function g(N,T ) is a function of both N and T and depends on C∗2NT , the convergence rate of the

estimator, in our case given by (7).

To select the number of factors in the macro-yields model, we estimate the macro-yields model in

equations (4)–(6) allowing from three, i.e. only the yield curve factors, up to a total of eight factors,
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where the first three are identified as the yield curve factors and the others are the unspanned macro

factors. Table 1 reports the information criterion, as shown in Equation (8), and the sum of the

variance of the idiosyncratic components for these different specifications of the macro-yields model.

The information criterion selects the model with five factors, i.e. three yield curve factors plus two

unspanned factors. This is also confirmed by the fact that the strongest reduction in the sum of

the variances of the idiosyncratic components is obtained passing from the four to the five factors

specification. Thus our macro-yields model is a latent factor model with three factors that explain

the cross-section of yields and two unspanned macroeconomics factors.

4 In Sample Results

4.1 Model Fit

Table 2 reports the share of variance of the macroeconomic variables explained by the macro-yields

factors. Results shows that the yield curve factors explain most of the variance of the yields and

federal funds rate. They also explain the part of the variance of price indices, unemployment,

nominal earnings, nominal consumption and money, in line with previous studies (see Diebold et

al. (2006)). The first unspanned macro factor captures the dynamics of industrial production and

other real variables, while the second unspanned factor mainly explains inflation and other nominal

variables.4

Figure 1 displays the estimated factors of the macro-yields model. The top three plots report

the yield curve factors, while the bottom two refer to the unspanned factors. The estimated yield

curve factors of the macro-yields model are highly correlated with the NS factors, which we estimate

by ordinary least squares as in Diebold and Li (2006) and report in dashed red lines in the top

plots. The differences between the NS factors and the first three macro-yields factors are due to the

fact that, in the macro-yields model, the yield curve factors are common to both yield curve and

4For comparison, in Appendix D we report in-sample results for an unrestricted macro-yields model, which does
not impose the zero restrictions on the factor loadings. Results show that these restrictions do not have any effect
on the fit of the model.
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Table 2: Cumulative variance of yields and macro variables explained by the macro-yields factors

Level Slope Curv UM1 UM2

Government bond yield with maturity 3 months 0.59 0.94 1.00 1.00 1.00
Government bond yield with maturity 1 year 0.61 0.83 0.99 0.99 0.99
Government bond yield with maturity 2 years 0.65 0.78 0.99 0.99 0.99
Government bond yield with maturity 3 years 0.70 0.79 1.00 1.00 1.00
Government bond yield with maturity 4 years 0.74 0.80 0.99 0.99 0.99
Government bond yield with maturity 5 years 0.78 0.82 0.99 0.99 0.99
Average Hourly Earnings: Total Private 0.07 0.29 0.33 0.33 0.67
Consumer Price Index: All Items 0.19 0.48 0.48 0.50 0.85
Real Disposable Personal Income 0.00 0.02 0.03 0.34 0.36
Effective Federal Funds Rate 0.53 0.93 0.96 0.96 0.97
House Sales - New One Family Houses 0.00 0.19 0.19 0.23 0.23
Industrial Production Index 0.02 0.02 0.03 0.69 0.69
M1 Money Stock 0.17 0.25 0.25 0.25 0.31
ISM Manufacturing: PMI Composite Index (NAPM) 0.03 0.05 0.05 0.61 0.65
Payments All Employees: Total nonfarm 0.00 0.02 0.10 0.70 0.70
Personal Consumption Expenditures 0.16 0.23 0.33 0.46 0.78
Producer Price Index: Crude Materials 0.03 0.14 0.14 0.20 0.43
Producer Price Index: Finished Goods 0.03 0.32 0.32 0.33 0.80
Capacity Utilization: Total Industry 0.02 0.16 0.21 0.63 0.64
Civilian Unemployment Rate 0.44 0.54 0.55 0.65 0.68

This table reports the cumulative share of variance of yields and macro variables explained by the macro-
yields factors. The first three columns refer to the yield curve factors (level, slope and curvature) and the
last two to the unspanned macroeconomic factors (UM1 and UM2).
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Figure 1: Macro-yields factors
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This figure displays the estimated factors of the macro-yields model. The dashed red lines in the three top graphs

refer to the NS yield curve factors estimated by ordinary least squares as in Diebold and Li (2006). The red dashed

line in the bottom left plot refers to the industrial production index (IP), while the red dashed line in the bottom plot

refers to the real interest rate (FFR-CPI). The grey-shaded areas indicate the recessions as defined by the NBER.
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macroeconomic variables. In fact, in the macro-yields model, we extract the yield curve factors from

both yields and macroeconomic variables and impose the NS restrictions on the factors loadings

of the yields to identify them as yield curve factors. The two bottom plots of Figure 1 show the

unspanned macro factors. The bottom left plot reports the first unspanned macro factor along

with the industrial production index, while the bottom right plot reports the second unspanned

macroeconomic factor along with the real interest rate (computed as the difference between the

federal funds rate and the consumer price index). As it is clear from the plots, the first unspanned

macroeconomic factor closely tracks the industrial production index, with a correlation of 90%, and

the second unspanned macroeconomic factor proxies the real interest, with a correlation of 74%.

This is in line with the fact that, as reported in Table 2, the first unspanned macroeconomic factor

explains mainly measures of real economic activity, while nominal variables are explained partly

by the yield curve factors and partly by the second unspanned factor. We can thus conclude that

the macro-yields models identifies two unspanned macroeconomic factors: real economic activity

and real interest rate. To understand whether these unspanned macroeconomic factors affect the

bond premium, in the next section, we analyze the ability of the macro-yields factors to explain

expected excess returns.

4.2 Excess Bond Returns

The one-year holding period excess bond return for a bond with maturity τ is defined as the return

of buying a bond with τ years to maturity at time t, selling it one year later, at time t + 12, as a

bond with τ − 1 years to maturity, and financing this strategy borrowing a bond with one year to

maturity at time t, i.e.

rx
(τ)
t+12 = −(τ − 1)y

(τ−1)
t+12 + τy

(τ)
t − y

(1)
t . (9)

Collecting the excess returns for bonds with different maturities at time t+ 12 in the vector rxt+12,

we get

rxt+12 = Π1yt+12 + Π2yt (10)
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where Π1 =

[
D[−1:−K] 0[K×1]

]
, Π2 =

[
1[K×1] D[2:K+1]

]
, D[−1:−K] denotes a diagonal matrix

with elements −1,−2, . . . ,−K in the diagonal and K + 1 denotes the total number of maturities.5

The compensation required by risk averse investors to hold long-term government bonds for

facing capital loss risk, if the bond is sold before maturity, is the bond term premium which can

be measured as the expected excess return

Et(rxt+12) = Π1Et(yt+12) + Π2yt. (11)

The Expectations Hypothesis of the term structure of interest rates states that the long-term

yields are determined by market expectations for the short-term rates over the holding period

of the long-term asset, plus a constant risk premium. This implies that expected excess returns

are time invariant and, thus, excess bond returns should not be predictable with variables in the

information set at time t.

The Expectations Hypothesis has been empirically rejected since Fama and Bliss (1987) and

Campbell and Shiller (1991), that find that excess returns can be predicted by forward rate spreads

and by yield spreads, respectively. More recent evidence by Cochrane and Piazzesi (2005) shows that

a linear combination of forward rates (the CP factor) explains between 30% and 35% of the variation

in expected excess bond returns. Moreover, Ludvigson and Ng (2009) find that macroeconomic

factors constructed as linear and non-linear combinations of principal components extracted from

a large data-set of macroeconomic variables (the LN factor) have important forecasting power for

future excess returns on U.S. government bonds, above and beyond the predictive power contained

in forward rates and yield spreads. Cooper and Priestley (2009) also find that the output gap has

in-sample and out-of-sample predictive power for U.S. excess bond returns.

As a preliminary analysis of the predictive ability of the macro-yields factors for one year holding

period excess bond returns, we compare the model-implied expected excess returns of the macro-

yields and the only-yields models obtained using equation (11). To compare with the previous

5Notice that to compute one-year holding period excess bond returns we use only five maturities, i.e. the one-year
riskless bond and the K = 4 risky bonds with maturities from two to five years.
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literature, we also report the predictive regressions that use the CP factor, the LN factor and the

CP and LN factors combined. In addition, in Appendix D, we show that the zero restrictions on

the factor loadings do not play any role when fitting excess bond returns.

We implement predictive regressions for the CP and LN factors by regressing excess bond

returns on the predictive factors Xt = {CPt, LNt} , as follows

rx
(τ)
t+12 = βXt + ε

(τ)
t+12, (12)

where we construct the predictive factors by pooling the predictive regression for the individual

maturities as follows

rxt+12 = γxt + εt+12, (13)

where rxt+12 = 1
4

∑5
τ=2 rx

(τ)
t+12 and xt contains the predictor variables. To construct the CP factor

we use the following predictor variables xCPt = [1, y
(1)
t , f

(2)
t , . . . , f

(5)
t ], where f

(τ)
t denotes the τ -

years forward rate.6 We estimate equation (13) using xCPt as predictor variables and construct

the CP factor as CPt = γ̂CPxCPt . To construct the LN factor, we use as predictor variables

xLNt = [1, PC1t, . . . , PC8t, PC13t ], where PC denotes principal components extracted from a large

dataset of 131 macroeconomic data series.7 We then estimate equation (13) using xLNt as predictor

variables and construct the LN factor as LNt = γ̂LNxLNt .

Results in Table 3 show that the macro-yields models explain about 46-55% of the variation of

the expected one year holding period excess returns, while the only-yields model can explain only

the 12-15% of the variation of expected excess returns. Table 3 reports also the R-squared from

the predictive regressions of excess bond returns on the CP and the LN factors. Results show that

the CP factor explains 22-27% of the variation in one-year ahead excess returns, slightly lower than

6The τ -years forward rate for loans between time t+ 12τ − 12 and t+ 12τ is defined as

f
(τ)
t = −(τ − 1)y

(τ−1)
t + τy

(τ)
t .

7The 131 macroeconomic data series used to construct the LN factor have been downloaded from Sydney C.
Ludvigson’s website at http://www.econ.nyu.edu/user/ludvigsons/Data&ReplicationFiles.zip.
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Table 3: In-sample fit of excess bond returns

Maturity MY OY CP LN LN+CP

2y 0.55 0.12 0.22 0.33 0.41
3y 0.53 0.12 0.24 0.33 0.43
4y 0.50 0.14 0.27 0.32 0.43
5y 0.46 0.15 0.24 0.30 0.40

This table reports the R2 for expected one year hold-
ing period excess bond returns from different models.
The columns MY and OY refer to the model-implied
expected excess bond returns from the macro-yields
model (MY) and the only-yields model (OY) respec-
tively. The columns CP, LN and CP+LN refer to the
predictive regression using the Cochrane and Piazzesi
(2005) factor (CP), the Ludvigson and Ng (2009) fac-
tor (LN), and both the Cochrane and Piazzesi (2005)
and the Ludvigson and Ng (2009) factors jointly.

the value reported in Cochrane and Piazzesi (2005). This is due to the fact that our predictive

regressions use more updated data and the performance of the CP factor has deteriorated over time,

as also shown by Thornton and Valente (2012). The LN factor explains a third of the variation of

future excess bond returns, while the CP and LN factors jointly explain 40-43% of the variation in

one-year ahead excess bond returns, lower than what is explained by the macro-yields model. We

can thus conclude that, in-sample, the macro-yields model outperforms the CP and the LN factors

even combined.

Figure 2 shows the predicted and the realized average excess bond returns from the macro-

yields and the only-yields model, and also from the predictive regressions using the CP and the LN

factors. The figure shows that the predictive excess bond returns from the only-yields model are

quite flat, indicating that the yield curve factors poorly predict excess bond returns. The CP factor

seems doing a better job than the only-yields model, but does not improve over the macro-yields

model, which is able to better predict the average expected excess return, also with respect to the

LN factor.
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Figure 2: Average 1-year holding period excess return: realized and predicted
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This figure displays the average excess return rxt+12 (blue continuous line) and the corresponding predicted values

from different models (dashed red line). The dashed red line in the top plots refer to the model-implied predicted

values from the macro-yields MY model (top right) and only-yields OY model (top left). The dashed red line in the

bottom plots refer to the predicted values from the predictive regressions using the CP factors (bottom left) and the

LN factor (bottom right). The grey-shaded areas indicate the recessions as defined by the NBER.
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5 Out of Sample Forecast

To evaluate the predictive ability of the macro-yields model, we generate out-of-sample iterative

forecasts of the factors, as follows

Et(F
∗
t+h) ≡ F̂ ∗t+h|t = (Â∗|t)

hF̂ ∗t|t,

where h denotes the forecast horizon and Â∗|t is estimated using the information available till time

t.8 We then compute out-of-sample forecasts of the yields given the projected factors, as follows

Et(zt+h) ≡ ẑt+h|t = Γ̂∗|tF̂
∗
t+h|t.

where Γ̂∗|t is estimated using data up to time t. We also compute out-of-sample predictions of excess

bond returns as follows

Et(rxt+12) ≡ rxt+12|t = Π1(Γ̂
∗
|tF
∗
t+12|t) + Π2yt

where Π1 and Π2 are defined in (10).

We forecast yields and excess returns recursively using data from January 1970 until the time

that the forecast is made, beginning in January 1990 to December 2008.

5.1 Yields

To evaluate the prediction accuracy of the macro yields model for out of sample forecasts of yields,

we use the Mean Squared Forecast Error (MSFE), i.e. the average squared error in the evaluation

period for the h-months ahead forecast of the yield (or excess return) with maturity τ

MSFEt1t0(τ, h,M) =
1

t1 − t0 + 1

t1∑
t=t0

(
ŷ
(τ)
t+h|t(M)− y(τ)t+h

)2
, (14)

8See Appendix A for the definitions of F ∗
t , Γ∗ and A∗.
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Table 4: Out-of-sample performance for yields

Macro-Yields

Maturity 3m 1y 2y 3y 4y 5y

h=1 1.17 1.05 1.06 1.00 1.05 1.14
h=3 0.79* 0.93 0.99 0.96 0.99 1.02
h=6 0.78** 0.89 0.94 0.93 0.93 0.94
h=12 0.69** 0.74** 0.79** 0.80*** 0.80*** 0.80***
h=24 0.62*** 0.66*** 0.74** 0.82** 0.88* 0.97

Only-Yields

Maturity 3m 1y 2y 3y 4y 5y

h=1 0.93 1.09 1.17 1.11 1.07 1.11
h=3 0.96 1.13 1.20 1.14 1.10 1.13
h=6 0.99 1.18 1.25 1.21 1.15 1.16
h=12 1.04 1.16 1.26 1.27 1.25 1.26
h=24 1.06 1.12 1.27 1.39 1.49 1.62

This table reports the relative MSFE of the macro-yields model and the only-yields
model over the MSFE of the random walk for multi-step predictions of the yields.
The first column reports the forecast horizon h. The sample starts on January 1970
and the evaluation period is January 1990 to December 2008. *, ** and *** denote
significant outperformance at 10%, 5% and 1% level with respect to the random walk
according to the White (2000) reality check test with 1,000 bootstrap replications
using an average block size of 12 observations.

where t0 and t1 denote, respectively, the start and the end of the evaluation period, y
(τ)
t+h is the

realized yield with maturity τi at time t+ h and ŷ
(τ)
t+h|t(M) is the h-step ahead forecast of the yield

with maturity τ from model M using the information available up to t.

Forecast results for yields are usually expressed as relative performance with respect to the

random walk, which is a näıve benchmark for yield curve forecasting very difficult to outperform,

given the high persistency of the yields. The random walk h-steps ahead prediction at time t of

the yield with maturity τ is

Et(y
(τ)
t+h) ≡ ŷ(τ)t+h|t = y

(τ)
t ,

where the optimal predictor does not change regardless of the forecast horizon. To measure the

relative performance of the macro-yields model with respect to the random walk, we use the relative
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Figure 3: 12-months ahead smoothed squared forecast errors for yields
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This figure displays the 5-years rolling 12-months ahead squared forecast error for the yields with 3, 36 and 60

months to maturity. The blue continuous line refers to the 5-years rolling squared forecast error of the macro-yields

MY model (left plots) and of the only-yields OY model (right plots). The dashed red line refers to 5-years rolling

squared forecast error of the random walk. The dates on the horizontal axis refer to the end of the rolling window

period. The grey-shaded areas indicate the recessions as defined by the NBER.
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MSFE computed as

rMSFEt1t0(τ, h,M) =
MSFEt1t0(τ, h,M)

MSFEt1t0(τ, h,RW )
.

Table 4 reports the rMSFE with respect to the random walk for the macro-yields model the

only-yields model. Results in Table 4 show that the only-yields model is outperformed by the macro-

yields model for all but the 1-month horizon. Moreover, the macro-yields model outperforms the

random walk at 3, 6, 12 and 24 steps ahead for all the maturities, with significant outperformance

according to the White (2000) reality check test for the 12 and 24 steps ahead forecasts.9 This

evidence is corroborated by Figure 3, which reports the 12-months ahead smoothed squared forecast

errors of the macro-yields, the only-yields and the random walk models for yields with 3, 36 and

60 months to maturity. The figure highlights how the macro-yields model has been systematically

outperforming the random walk, especially in the last part of the evaluation sample for the short

maturity and the first part of the sample for the long maturities. The only-yield model, instead has

been performing as the random walk in the first part of the evaluation sample but its performance

deteriorated in the last part of the evaluation sample, significantly underperforming the random

walk. This suggests that the unspanned macroeconomic factors, while not important for explaining

the contemporaneous yields curve, contain useful information to predict the future yield curve

factors and, thus, the future evolution of the yield curve.

5.2 Excess Bond Returns

Out of sample forecast results for excess bond returns are reported in Table 5, which contains

the relative MSFE of the macro-yields model (MY) with respect to the constant excess return

benchmark, where one-year holding period excess returns are unforecastable at one year horizon,

as in the expectation hypothesis. The macro-yields model outperforms the constant excess return

benchmark for all maturities and the outperformance is significant for all maturities according to

the White (2000) reality check test. In Appendix D we show that the same results hold also when

the zero restrictions on the factor loadings are removed, confirming that the macro factors help to

9For more details about the reality check test see Appendix C.
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Table 5: Out-of-sample predictive performance for excess returns

Maturity MY OY CP LN LN+CP

2y 0.76** 1.20 1.17 0.80 0.80
3y 0.75** 1.20 1.21 0.79 0.83
4y 0.74** 1.18 1.21 0.78 0.83
5y 0.75** 1.18 1.18 0.81 0.83

This table reports the relative MSFE of the macro-yields
model (MY ), the only-yields model (OY ), the Cochrane
and Piazzesi (2005) factor (CP ), the Ludvigson and Ng
(2009) (LN) factor, the Cochrane and Piazzesi (2005) and
the Ludvigson and Ng (2009) factors combined (LN+CP )
with respect to the expectation hypothesis for excess re-
turns. The sample starts on January 1970 and the eval-
uation period is January 1990 to December 2008. * and
** denote significant outperformance at 10% and 5% level
with respect to the expectation hypothesis according the
White (2000) reality check test with 1,000 bootstrap repli-
cations using an average block size of 12 observations.

predict the yield curve factors but do not explain the cross-section of yields. As a comparison, we

report relative MSFE of the only-yields model (OY) that shows that unspanned macro-factors are

indeed important in order to predict excess bond returns. Table 5 also reports the out-of-sample

relative MSFEs of the excess bond returns forecasts using the CP factor, the LN factor, and the CP

and LN factors combined obtained from the predictive regressions in (12). The worst performing

models are the ones that do not use macroeconomic variable, i.e. the only-yield model and the CP

factors. In line with the predictive regressions of excess bond returns and with the 12 steps ahead

out-of-sample forecast performance of the macro-yields model for the yields, results in Table 5 show

that the macro-yields model is the best performing model for the prediction of the one-year excess

bond returns for all maturities.

To further understand the performance of the macro-yields model to predict one-year holding

period excess bond returns, Figure 4 plots the 5-years rolling mean squared forecast error of the

macro-yields model, the only-yields model, the CP and LN factors along with the 5-years rolling

mean squared forecast error under the expectation hypothesis (EH). The figure shows that the

performance of the only-yield model and the CP factors are similar: both models outperform the

expectation hypothesis in the first part of the evaluation sample but display large forecast errors in
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Figure 4: Smoothed mean squared forecast errors for excess bond returns
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This figure displays the 5-years rolling mean squared forecast error for one-year holding period excess bond returns

from the expectation hypothesis EH (blue continuous line) and the corresponding values from different models (dashed

red line). The dashed red line in the top plots refer to 5-years rolling mean squared forecast error of the macro-yields

MY model (top right) and only-yields OY model (top left). The dashed red line in the bottom plots refer to the

5-years rolling mean squared forecast error from the predictive regressions using the CP factors (bottom left) and

the LN factor (bottom right). The dates on the horizontal axis refer to the end of the rolling window period. The

grey-shaded areas indicate the recessions as defined by the NBER.
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the second part. Also the performance of the macro-yields model and the LN factors are similar,

they both provide more accurate predictions than the expectation hypothesis, in particular in the

last part of the evaluation period. However, it is clear from the figure that the macro-yields model,

apart from being the best performing model on average as seen in Table 5, is the best performing

model for the whole evaluation period. This is a clear evidence that the unspanned macroeconomic

factors identified by the proposed macro-yields model as related with economic growth and real

interest rates have predictive ability for the yield curve factors and, thus, for excess bond returns.

6 Conclusions

In this paper we analyze the predictive content of macroeconomic information for the yield curve of

interest rates and excess bond returns in the United States. We find that two macroeconomic factors

characterizing economic growth and real interest are unspanned by the cross-section of government

bond yields and have significant predictive power for the bond yields and excess returns.

In future research, we plan to extend our empirical specification to allow for the zero lower

bound of interest rates, non-synchronicity of macroeconomic data releases and mixed frequencies.

The macro-yields model presented in this paper cannot be estimated on a sample that includes the

great recession, as it does not ensure a zero lower bound on interest rates. Our model model can,

however, be easily extended to deal with this issue by anchoring the shorter end of the yield curve

using market expectation, along the lines of Altavilla, Costantini, Giacomini and Ragusa (2012).

Data revisions and jagged edges due to the non-synchronicity of macroeconomic data releases

are important characteristics to be taken into account when extracting macroeconomic information,

see Giannone, Reichlin and Small (2008). In addition, bond yields are available at higher frequencies

than macroeconomic variables. These features can be easily incorporated into our empirical model

along the line described in Banbura et al. (2012).

23



A Estimation Procedure

We can rewrite the macro-yields model in equations (4)–(6) in compact form as

zt = a+ ΓFt + vt, (15)

Ft = µ+AFt−1 + ut, ut ∼ N(0, Q) (16)

vt = Bvt−1 + ξt, ξt ∼ N(0, R) (17)

where zt =

yt
xt

, Ft =

F yt
F xt

, a =

 0

ax

, Γ =

Γyy Γyx

Γxy Γxx

, A =

Ayy Ayx

Axy Axx

, Q =

Qyy Qyx

Qxy Qxx

,

µ =

µy
µx

 and Γyy = ΓNS is the matrix whose rows correspond to the smooth patterns proposed

by Nelson and Siegel (1987) and shown in equation (2). In addition Γyx = 0, as the macroeconomic

factors F xt are unspanned by the cross-section of yields Γyx = 0.10

The macro-yields model in (15)–(16) can be put in a state-space form augmenting the states Ft

with the idiosyncratic components vt and a constant ct as follows

zt = Γ∗F ∗t + v∗t , v∗t ∼ N(0, R∗)

F ∗t = A∗F ∗t−1 + u∗t , u∗t ∼ N(0, Q∗)

where Γ∗ =

[
Γ a IN

]
, F ∗t =


Ft

ct

vt

, A∗ =


A µ . . . 0

... . .
.

1
...

0 . . . . . . B

, u∗t =


ut

νt

ξt

, Q∗ =


Q . . . 0

... ε
...

0 . . . R


and R = εIn, with ε a very small fixed coefficient. In this state-space form, ct an additional state

variable restricted to one at every time t.

10In Appendix D, we report results for an unrestricted macro-yields model that allows all factor loadings to be
different from zero. We also estimate the only-yields model using the same procedure, as it implies the following
restrictions in (15)–(16): zt = yt, Ft = F yt , a = 0, Γ = ΓNS , µ = µy.
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The restrictions on the factor loadings Γ∗ and on the transition matrix A∗ can be written as

H1 vec(Γ∗) = q1, H2 vec(A∗) = q2,

where H1 and H2 are selection matrices, and q1 and q2 contain the restrictions.

We assume that F ∗1 ∼ N(π1, V1), and define y = [y1, . . . , yT ] and F ∗ = [F ∗1 , . . . , F
∗
T ]. Then

denoting the parameters by θ = {Γ∗, A∗, Q∗, π1, V1}, we can write the joint loglikelihood of zt and

Ft, for t = 1, . . . , T , as

L(z, F ∗; θ) = −
T∑
t=1

(
1

2
[zt − Γ∗F ∗t ]′ (R∗)−1 [zt − Γ∗F ∗t ]

)
+

−T
2

log |R∗| −
T∑
t=2

(
1

2
[F ∗t −A∗F ∗t−1]′(Q∗)−1[F ∗t −A∗F ∗t−1]

)
+

−T − 1

2
log |Q∗|+ 1

2
[F ∗1 − π1]′V −11 [F ∗1 − π1] +

−1

2
log |V1| −

T (p+ k)

2
log 2π + λ′1 (H1 vec(Γ∗)− q1) + λ′2 (H2 vec(A∗)− q2)

where λ1 contains the lagrangian multipliers associate with the constraints on the factor loadings

Γ∗ and λ2 contains the lagrangian multipliers associated with the constraints on the transition

matrix A∗.

The computation of the Maximum Likelihood estimates is performed using the EM algorithm.

Broadly speaking, the algorithm consists in a sequence of simple steps, each of which uses the

Kalman smoother to extract the common factors for a given set of parameters and multivariate

regressions to estimate the parameters given the factors. We initialize the yield curve factors with

the NS factors using the two-steps OLS procedure introduced by Diebold and Li (2006). We then

project the macroeconomic variables on the NS factors and use the principal components of the

residuals of this regression to initialize the unspanned macroeconomic factors. These estimated

factor are then treated as if they were the true observed factors. The initial parameters are hence

estimated by OLS. After the parameters are estimated, a new set of factors is obtained by using
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the Kalman smoother. If we stop at this stage, we have the two-step procedure of Doz, Giannone

and Reichlin (2011). The quasi-maximum likelihood estimate consists essentially in iterating these

steps until convergence, see Doz et al. (2012).

In practice, we use the restricted version of the EM algorithm, the Expectation Restricted

Maximization, since we need to impose the smooth pattern on the factor loadings of the yields

on the NS factors. The ERM algorithm alternates Kalman filter extraction of the factors to the

restricted maximization of the likelihood. At the j-th iteration the ERM algorithm performs two

steps:

1. In the Expectation-step, we compute the expected log-likelihood conditional on the data and

the estimates from the previous iteration, i.e.

L(θ) = E[L(z, F ∗; θ(j−1))|z]

which depends on three expectations

F̂ ∗t ≡ E[F ∗t ; θ(j−1)|z]

Pt ≡ E[F ∗t (F ∗t )′; θ(j−1)|z]

Pt,t−1 ≡ E[F ∗t (F ∗t−1)
′; θ(j−1)|z]

These expectations can be computed, for given parameters of the model, using the Kalman

filter.

2. In the Restricted Maximization-step, we update the parameters maximizing the expected

log-likelihood with respect to θ:

θ(j) = arg max
θ
L(θ)

This can be implemented taking the corresponding partial derivative of the expected log

likelihood, setting to zero, and solving.
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The procedure outlined above can be extended to estimate also the decay parameter λ controlling

for the shape of the loadings of the yields on the slope and curvature factors. Since the factor

loadings are a non-linear function λ, an additional step consisting in the numerical maximization

of the conditional likelihood with respect to λ is required. The procedure is know as Expectation

Conditional Restricted Maximization (ECRM) algorithm.

B Data

Table 6: Macroeconomic Variables

Series N. Mnemonic Description Transformation

1 AHE Average Hourly Earnings: Total Private 1
2 CPI Consumer Price Index: All Items 1
3 INC Real Disposable Personal Income 1
4 FFR Effective Federal Funds Rate 0
5 HSal House Sales - New One Family Houses 1
6 IP Industrial Production Index 1
7 M1 M1 Money Stock 1
8 Manf ISM Manufacturing: PMI Composite Index (NAPM) 0
9 Paym All Employees: Total nonfarm 1
10 PCE Personal Consumption Expenditures 1
11 PPIc Producer Price Index: Crude Materials 1
12 PPIf Producer Price Index: Finished Goods 1
13 CU Capacity Utilization: Total Industry 0
14 Unem Civilian Unemployment Rate 0

This table lists the 14 macro variables used to estimate the macro-yields. Most series have been transformed
prior to the estimation, as reported in the last column of the table. The transformation codes are: 0 = no
transformation and 1 = annual growth rate.

C Reality Check Test

To compare the out of sample predictive ability of a model with respect to the benchmark, we use

the reality check test of White (2000), as we compare only non-nested models.

If we denote by et(b) the forecast errors of the benchmark and by et(M) the forecast errors of

the model under consideration. Then we can define the null hypothesis of no predictive superiority
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over the benchmark as

H0 : f = E(ft) ≡ E(et(b)
2 − et(M)2) ≤ 0 (18)

The test is then based on the statistic

f =
1

t1 − t0

t1∑
t=t0

f̂t (19)

where t0 and t1 denote, respectively, the start and the end of the evaluation period, and hats denote

estimated statistics.

To approximate the asymptotic distribution of the test statistic, we use block-bootstrap as

follows:

1. We generate bootstrapped forecast errors ê∗t (b) and ê∗t (M) using the stationary block-bootstrap

of Politis and Romano (1994) with average block size of 12. This procedure is analogous to

the moving blocks bootstrap, but, instead of using blocks of fixed length uses blocks of ran-

dom length, distributed according to the geometric distribution with mean block length 12.

Also to give the same probability of resampling to all observations, we use a circular scheme.

2. Construct the bootstrapped test statistic as

f
∗

=
1

t1 − t0

t1∑
t=t0

(ê∗t (b)
2 − ê∗t (M)2)

3. Repeat steps 1 and 2 for 1,000 times to obtain an estimate of the distribution of the test

statistic f
∗

= [f
∗
(1), . . . , f

∗
(1,000)].

4. Compare V = (t1 − t0)1/2f with the quantiles of V ∗ = (t1 − t0)1/2(f
∗ − f) to obtain the

p-value.
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D Unrestricted Macro-Yields Model

In this Appendix, we report results for an unrestricted macro-yields model, which does not impose

the zero restrictions on the factor loadings of the yields on the macro factors. In practice, this model

allows the macro factors F xt to directly affect the cross-section of yields. Results in Tables 7–9,

show that the in sample and out of sample performance for yields and excess bond returns of the

unrestricted macro-yields model are equal to the ones of the macro-yields model in Tables 2–9.

This provides evidence that the zero restrictions on the factor loadings are satisfied by the data,

implying that the macro factors F xt are unspanned by the cross-section of yields.

Table 7: Unrestricted Macro-Yields Model: Fit

Level Slope Curv M1 M2

Government bond yield with maturity 3 months 0.59 0.95 1.00 1.00 1.00
Government bond yield with maturity 1 year 0.61 0.83 0.99 0.99 0.99
Government bond yield with maturity 2 years 0.65 0.79 0.99 0.99 0.99
Government bond yield with maturity 3 years 0.70 0.79 1.00 1.00 1.00
Government bond yield with maturity 4 years 0.74 0.80 0.99 0.99 0.99
Government bond yield with maturity 5 years 0.78 0.82 0.99 0.99 0.99
Average Hourly Earnings:Total Private 0.07 0.29 0.33 0.33 0.67
Consumer Price Index: All Items 0.19 0.48 0.48 0.50 0.86
Real Disposable Personal Income 0.00 0.02 0.03 0.34 0.36
Effective Federal Funds Rate 0.54 0.93 0.96 0.96 0.97
Hose Sales - New One Family Houses 0.00 0.19 0.19 0.22 0.22
Industrial Production Index 0.02 0.02 0.03 0.70 0.70
M1 Money Stock 0.17 0.25 0.25 0.25 0.31
ISM Manufacturing: PMI Composite Index (NAPM) 0.03 0.05 0.05 0.61 0.65
Payments All Employees: Total nonfarm 0.00 0.02 0.10 0.71 0.71
Personal Consumption Expenditures 0.16 0.23 0.33 0.47 0.79
Producer Price Index: Crude Materials 0.03 0.13 0.13 0.20 0.43
Producer Price Index: Finished Goods 0.03 0.31 0.31 0.32 0.81
Capacity Utilization: Total Industry 0.02 0.16 0.20 0.62 0.63
Civilian Unemployment Rate 0.44 0.53 0.55 0.64 0.67

This table reports the cumulative share of variance of the yields and macro variables explained by the yield
curve factors (level, slope and curvature) and the macroeconomic factors in an unrestricted macro-yields
model.
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Table 8: Unrestricted Macro-Yields Model: Out-of-sample performance for yields

Maturity 3m 1y 2y 3y 4y 5y

h=1 1.21 1.04 1.05 1.01 1.05 1.12
h=3 0.81* 0.93 0.99 0.97 0.99 1.02
h=6 0.79** 0.89 0.95 0.93 0.93 0.94
h=12 0.67** 0.73** 0.78** 0.79*** 0.79*** 0.79***
h=24 0.59*** 0.63*** 0.71*** 0.78*** 0.84** 0.92

This table reports the relative MSFE of the unrestricted macro-yields model over
the MSFE of the random walk for multi-step predictions of the yields. The first
column reports the forecast horizon h. The sample starts on January 1970 and
the evaluation period is January 1990 to December 2008. *, ** and *** denote
significant outperformance at 10%, 5% and 1% level with respect to the random
walk according the White (2000) reality check test with 1,000 bootstrap replications
using an average block size of 12 observations.

Table 9: Unrestricted Macro-Yields Model: Excess Bond Returns

Maturity In Sample Out of Sample

2y 0.57 0.76**
3y 0.55 0.75**
4y 0.50 0.74**
5y 0.47 0.75**

The column In Sample reports the R2 of
the unrestricted macro-yields model for excess
bond returns. The column Out of Sample re-
ports the out of sample relative MSFE of the
unrestricted macro-yields model with respect
to the expectation hypothesis. * and ** de-
note significant outperformance at 10% and
5% level with respect to the expectation hy-
pothesis according the White (2000) reality
check test with 1,000 bootstrap replications
using an average block size of 12 observations.
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