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Abstract. We define a game with incomplete information where firms com-

pete in prices. The demand functions faced by the firms depends on the prices

and “types” of all the firms. The variable “type” reflects the ability of firms to

attract consumers and produces continuous demand functions, leading to sta-

bility in competition. In addition, we consider that the information about types

is not complete and thus there is uncertainty on the residual demands. We

show existence of equilibrium in distributional strategies and existence of ap-

proximate equilibria in pure strategies. Then, we analyze different specifications

of the demands and the information structure which yield further results and

interpretations, providing new insights to the phenomenon of price dispersion,

Bertrand’s paradox and monopolistic competition.

JEL Classification: D4, L13, L00, L1, C70.

Keywords: Price competition, incomplete information, Nash equilibrium, ap-

proximate equilibrium, price dispersion.

2



1 Introduction

We state and analyze a game with incomplete information where firms compete

in prices. In the model, the strategic opportunities which determine the market

power are affected not only by prices but also by attributes of firms to attract

costumers, leading to continuous residual demand functions. We will refer to

this continuous, smooth kind of competition as “stability”. Thus, this work adds

to the literature on price competition which goes back to the classical Bertrand

model that has originated numerous studies with alternative assumptions on

economic primitives.

In this scenario of oligopolistic price competition, the formulations of the

demands faced by firms play a key role. Different ways of defining these residual

demands lead to different games with a variety of equilibrium notions and a wide

range of results. For instance, the demand each firm faces may depend on the

consumers’ information. This is the case of the works by Salop and Stiglitz (1977)

and Varian (1980), who considered only two kinds of consumers: informed and

uniformed. Search theory is also broadly used to deal with the matter (see, for

instance, Stahl ,1989, Jansen and Moraga-González, 2004 or Janssen, Moraga-

González and Wildenbeest, 2005).

The majority of the models where firms select prices and the demands ab-

sorbed by firms depend on the ratio between informed and non informed con-

sumers lack stability in competition due to the discontinuity of demands. We

consider a market where neither all informed consumers choose the firm with the

lowest price nor all uninformed costumers choose randomly among all firms that

charge a price of the good below their reservation price. It is not easy to argue

that arbitrarily small variations in the prices lead to significant changes in the

demand functions. This was already pointed out by Hotelling (1929); if a seller

gradually increases the price of a good while her rivals keep their prices fixed,

sales will diminish continuously, rather than fall in an abrupt way. This line of

arguments leads to the analysis of competition under stability.

The stability in competition in our model appears as the result of incorpo-

rating a variable into the residual demand functions which we refer to as “type”

of the firm, allowing for gradual shiftings of consumers from one firm to another

when they perceive differences in the price of the good. This variable represents

certain attributes of the firms which may be perceived differently by consumers

and may encompass many different features, like reputation, kind sellers, crowd-
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ing effects, or even something as simple as having heating in winter time, or air

conditioning in summer1. Overall, the type of the firms captures their ability to

attract consumers, and goes in the line of Hotelling (1929) when he mentioned

that some consumers buy the good in a certain place and others buy it in a

different one, in spite of small differences in the price. On the other hand, these

abilities of the firms are not necessarily perfectly known and, as we have already

remarked, can be perceived in a different way by each consumer. Therefore, we

introduce a game which allows for incomplete information in the type variable

where firms compete in prices, and where such competition takes place in a stable

way.

To be more precise, given a strategy profile (prices selected for each firm),

the demand functions depend continuously on both prices and types of the firms

which are underlain by their attributes or abilities to attract consumers and be-

come an incomplete information issue. Therefore, the payoff functions depend

on the prices chosen by all the firms and also on all their types . It is important

to remark that such a type variable is not a strategy for any firm. Thus, in this

game there is an exogenous information structure which is a probability distri-

bution on the set of type vector and is common knowledge for the firms. When

this probability distribution is degenerated we are in the complete information

scenario.

Under standard assumptions, we show existence of equilibrium in distribu-

tional strategies.2 We also prove that there exists an approximate equilibrium in

pure strategies for this game. We emphasize that, in the incomplete information

setting, a pure strategy of a firm is a function that assigns a price to each type.

A game with demand functions which are linear on prices illustrates this point.

The model we consider opens up the possibility of testing it with different

specifications of the information structure and the demands, which lead to many

different games, explaining a variety of concerns in the light of a price competition

1Indeed, we can find somehow the idea of the type variable in Hotelling’s work, when he

mentions some reasons for which a costumer would prefer to buy a good in one shop than in

another even if she pays more for the good, such as location, way of doing business, family

relationship or friendship with the owner, etc. While Hotelling’s work focuses on location, we

intend to provide a framework where the type variable may encompass any of the aforemen-

tioned examples. In some sense, this work can be understood as a variant of Hotelling’s work

with incomplete information.
2We remark that Milgrom and Weber (1985) showed that distributional strategies are simply

another way of representing mixed and/or behavioral strategies.
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analysis under stability.

First, taking residual demand functions which are linear in prices, and in a

context of incomplete information, price dispersion arises as an equilibrium in

pure strategies, in contrast with other approaches that explain this phenomenon

by means of a mixed strategy equilibrium (see, for instance, Varian, 1980). Then,

we also explore whether the incomplete information framework might give some

firms advantages over the complete information situation. For it, using the same

game, we show that in the equilibrium, the expected payoffs of a firm are higher

under uncertainty on its type than in a complete information scenario. There-

fore, an analysis of the expected payoffs under complete or incomplete informa-

tion would be an interesting exercise for the firms in order to apply it to their

advertising policy: depending on the result, firms may prefer to advertise in such

a way their type becomes public information, or on the contrary, to do it trying

to keep their type “hidden”.

Next, we consider a particular formulation of the residual demands by sep-

arating the effects of prices and types. Within this setting, we state a game

which not only provides a different way to overcome the Bertrand paradox, but

also shows that its equilibrium results in a monopolistic competition situation,

in accordance with the view of Chamberlin (1933, 1937), when the number of

firms increases.

Finally, we observe that consumers sometimes choose a certain shop even

though they are aware that the price of the good is slightly more expensive than

in another. We argue that in this case, what is happening is that the type variable

has almost all the effect in the distribution of demand. In other words, types

become a relevant variable only when the difference in prices is small enough.

On the other hand, when the differences among prices are sufficiently large, the

effect of types becomes negligible and the firm charging the lowest price faces

all the demand. We remark that this can be carried out in a continuous way,

preserving stability in competition. We state specific demands highlighting this

fact. In this case, we point out that our analysis allows for a better explanation

of the degree of price dispersion.

The remainder of the paper is organized as follows. In Section 2, we present

an incomplete information game where a finite number firms compete in prices

and there is stability in competition. We also show existence results for different

notions of equilibrium. In Section 3, we analyze a more particular situation
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where the demands faced by the firms depend separately on types and prices. In

Section 4, we study a game in which the type becomes the relevant variable only

when prices do not differ too much. Each section includes different specifications

of the residual demands which illustrate our general approach and give rise to a

variety of further results and interpretations.

2 The game

Let us consider a continuum of consumers3 represented by the interval [0, 1], who

desire to buy, at most, one unit of a commodity. Every consumer has the same

reservation price r, which is the maximum price they are willing to pay for the

good.

There are n firms or stores that produce the commodity and each one has a

continuous cost function Ci : [0, 1]→ IR+ defined on the measures of customers,

i = 1, . . . , n. Firms have market power and compete in prices. When there is

price competition, the demand each firm faces (residual demands) becomes cru-

cial. We consider a scenario with stability in competition in the sense that small

changes in prices do not lead to abrupt modifications in the residual demands.

This relies on the fact that firms have relevant abilities or attributes to attract

customers. That is, each firm has a set of possible types corresponding to the

values its attributes can take and different type vectors may lead to different as-

signments of buyers among firms. Then, the residual demands depend not only

on prices but also on the profile of types.

The type variable encompasses several features. For instance, it may be in-

terpreted in terms of reputation, crowding types, transmission of the degree of

satisfaction by previous clients, skills of each firm’s employees or any other char-

acteristic of the firm itself which affects the number of customers it is able to

get.

Let ti denote the type variable of firm i whose values lie in a set T ⊂ IR+. The

prior probability distributions on the types is assumed to be common knowledge

and is given by an information structure η which is a probability measure on T n.

Let ηi, i = 1, . . . , n, be the marginal distributions of η.

3Note that the consideration of a continuum of consumers allows us to provide reasons for

their non-strategic behavior. We might also consider a large number of consumers as in Varian

(1980).
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In this incomplete information setting, a strategy is a complete plan of actions

that covers every contingency of the game. That is, a pure strategy for firm i is

a measurable function from T to Ki, being Ki a closed real subinterval of [0, r],

where firm i selects a price.4 Moreover, a distributional strategy5 for the firm i

is given by a probability measure on T ×Ki for which the marginal distribution

on T is ηi, that is, the one specified by the information structure. Note that pure

strategies are in one-to-one correspondence with distributional strategies whose

conditional distributions are Dirac measures for each type.

To define the payoff functions of the game, given a vector of types t ∈ T n and

a vector of prices p ∈ K = K1× . . .×Kn, let us define the function πi as follows:

πi(t, p) = di(t, p)pi − Ci(di(t, p)),

where di(t, p) is the demand that firm i faces whenever the vector of types is t and

firms chooses prices p. We point out that, given a strategy profile of prices p and

the vector of types t, the aggregate demand equals 1, that is,
∑n

i=1 di(t, p) = 1

for every (t, p) ∈ T n ×K.

We state the following regularity assumptions on the game. These hypothesis

allow us to express the players’ expected payoff (firms’ expected profits) in a

convenient manner and, moreover, to get existence results for both distributional

strategy equilibria and pure strategy approximate equilibria, which we define

later on.

(A.1) The informational variable ti belongs to a compact set T ⊂ IR+ for every

firm i = 1, ..., n.

(A.2) The measure η is absolutely continuous with respect η̂ = η1× . . .× ηn. Let

f be the density of η with respect to η̂.

(A.3) The residual demand di : T n×K → [0, 1] is a continuous function for every

firm i = 1, . . . , n.

Note that the continuity requirement in (A.3) guarantees that the functions

πi, i = 1, . . . , n, are continuous, which is a standard condition in games with in-

complete information. We remark that, this assumption (A.3) bears the stability

4For instance, if we consider a technology resulting in strictly decreasing average costs, we

may consider Ki = [δi, r], where δi is the minimum average cost Ci(1).
5See Milgrom and Weber (1985) for a discussion on distributional, mixed and behavioral

strategies.
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in competition property. We also observe that the assumption (A.1) guarantees

the equicontinuity property of the functions (t, p) → πi(t, p) which is the usual

hypothesis to obtain purification results.

Given a profile (ν1, . . . , νn) of distributional strategies, assumption (A.2) al-

lows us to write the expected payoff Πi to firm i as follows:

Πi(ν1, . . . , νn) =

∫
Tn×K

πi(t, p) f(t) dν1 . . . dν1

The price competition game G with incomplete information is defined by the

informational structure η, the strategy set Ki for each firm i = 1, ..., n and the

payoff functions Πi, i = 1, ..., n.

A profile (ν1, . . . , νn) of distributional strategies is an equilibrium of the game

G if Πi(ν1, . . . , νn) ≥ Πi(ν1, . . . , ν
′
i, . . . , νn) for every firm i and every alternative

distributional strategy ν ′i.

Theorem 2.1 The set of equilibrium points in distributional strategies for the

game G is non empty.

Proof. First, assumption (A.3) guarantees that the functions πi, 1 = 1, . . . , n

are continuous. By assumptions (A.1) the type set is compact and therefore the

continuity of πi(t, ·) is uniform over types t.

Second, by assumption (A.2) the game G has absolutely continuous informa-

tion. Therefore, we conclude that there exists a distributional strategy equili-

brium for the game G (see theorem 1 in Milgrom and Weber, 1985).6

Q.E.D.

An ε-equilibrium point of the game G is an n-tuple (ν1, . . . , νn) such that

Πi(ν1, . . . , νn) + ε ≥ Πi(ν1, . . . , ν
′
i, . . . , νn) for every firm i and every alternative

strategy ν ′i. That is, we have an approximate equilibrium (i.e., ε-equilibrium)

whenever every firm is not able to increase its expected profit more than ε by

deviating unilaterally.

Theorem 2.2 If each ηi is atomless, then for every ε > 0 there exists a pure

strategy ε-equilibrium point for the game G.
6We remark that this existence result by Milgrom and Weber (1985) was extended by Balder

(1988) to a setting with abstract type spaces under weaker assumptions in the payoff functions

and the proofs are based it the theory of weak convergence for transition probabilities. See

also Balder (2004) for more recent developments.
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Proof. Since each ηi is atomless, it follows that for every player, the set of degen-

erated distributional strategies (those which are in one-to-one correspondence

with pure strategies) is dense in her set of distributional strategies (see theo-

rem 3 in Milgrom and Weber, 1985). This denseness property together with the

equicontinuity properties of the functions πi allow us to conclude, as in Milgrom

and Weber (1985), that for any mixed strategy equilibrium we can find an ε-

equilibrium in pure strategies which is actually arbitrarily close to the former

(for the weak∗ topology).

Q.E.D.

For the special situation where the payoff function for each firm depends only

on her own type and each firm’s strategy set is restricted to a finite subset, the

Theorem 4 in Milgrom and Weber (1985) allows us to conclude that the game

with incomplete information has an equilibrium point in pure strategies.

Representing stability in competition by means of an additional variable al-

lows us to consider and analyze different scenarios to illustrate special economic

situations. In other words, the generality of the model allows us to specify dif-

ferent residual demands, which lead to different games, each of them shedding

light on a precise issue in an industrial economics framework. This is the aim in

the reminder of the paper.

Price dispersion as pure strategy equilibrium Consider two firms com-

peting in prices and facing residual demands that depend continuously on prices

and types. Both have just fixed costs and choose prices in [0, r], where r is

the reservation price of their customers represented by the unit interval [0, 1].

The type of each firm takes values in the closed interval [1, 2]. 7 The demands

associated to firms are given by

d1(p1, p2, t1, t2) = − t2
t1 + t2

p1 +
t1

t1 + t2
p2 +

1

2
and

d2(p1, p2, t1, t2) = − t1
t1 + t2

p2 +
t2

t1 + t2
p1 +

1

2
.

Consider the informational structure such that the type of firm 1 is known,

namely, t1 = c, while the type of firm 2 is uniformly distributed in [1, 2]. Then,

some calculations show that there is an equilibrium in pure strategies given by

p̄ =
1∫ 2

1
t
t+c
dµ(t)

=
1

1 + c ln 1+c
2+c

and p(t) =
2tp1 + t+ c

4c
,

7We consider T = [1, 2] for simplicity.
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where p̄ is the price charged by firm 1 and p : [1, 2]→ [0, r] is the pure strategy for

firm 2 defining the equilibrium. Note that since there is incomplete information

regarding the type of firm 2, a pure strategy for this firm assigns a price to

each type. We remark that in this case price dispersion arises as pure strategy

equilibrium of a game with incomplete information.

Observe that when the informational structure η is given by a Dirac measure

on the set of vector of types T n, there exists just one possible profile of types

t ∈ T n. Therefore, in this situation, the uncertainty disappears and then we

recast a complete information game, where the payoff functions are πi(t, ·) :

K → IR, i = 1, . . . , n. The continuity of these functions ensures existence of

Nash equilibrium in mixed strategies.8 Furthermore, if for every i, the profit

πi(t, ·) is also quasi-concave in the strategy (price) selected by firm i, there is

Nash equilibrium in pure strategies. Therefore, our framework paves the way to

compare equilibria with complete and incomplete information.

Complete vs. incomplete information. Consider again the previous

game but with complete information. For every vector of types (t1, t2), there is

an equilibrium in pure strategies, given by p∗1 = t1+t2
2t2

and p∗2 = t1+t2
2t1

, which leads

to profits π∗1 = t1+t2
4t2

and π∗2 = t1+t2
4t1

for firms 1 and 2, respectively. Then, we

find price dispersion provided that firms with different attributes charge different

prices whereas in the incomplete information setting price dispersion appears as

an equilibrium in pure strategies (where each firm sets a price for every type in

T ). We remark that, in this case, the ratio of prices is given by the ratio of types,

which determines the degree of dispersion of prices.

To compare, let us return to this example with incomplete information. Com-

puting the expected payoffs at the equilibrium, we have Π∗1 = p̄
4

= 1

4(1+c ln 1+c
2+c)

and Π∗2 = 3p̄2

8c
+ p̄(3−2c)

8c
+ 3

32c
+ 1

16
for firms 1 and 2, respectively. It is not hard

to show that the equilibrium payoff Π∗1 of firm 1 is increasing in its own type,

whereas the equilibrium profits Π∗2 of firm 2 decrease as the type of their op-

ponent increases instead. Moreover, the equilibrium expected payoff of firm 2,

when c = 2 is higher that the maximum payoff that firm 2 can obtain at equili-

brium with complete information, which is attained when t1 = 1 and t2 = 2. A

conclusion from this fact is that it would affect the advertising policy of firm 2

since it prefers to keep incomplete information.

8We recall that in this normal form game a mixed strategy for firm i is a probability measure

on the set of pure strategies Ki which is compact and convex.
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3 Separating the effects of types and prices

Let us consider a particular game where the demand that each firm gets depends

separately on the two kinds of variables that we have considered, namely, prices

and types. The way in which the prices affect the demands is captured by

a function denoted by α while the implication of the types is expressed by a

function β. The overall effect is then stated by a convex combination of these

functions, α and β, depending on the profiles of prices and types, respectively.

To be precise, α is a continuous function fromK to [0, 1]n, where the parameter

αi(p) defines the part of demand faced by firm i that is determined by the profile

of prices selected by the stores. On the other hand, given a vector of types t,

βi(t) reflects the proportion of consumers that firm i gets coming from such types

or abilities. That is, a realization of types t determines β(t) ∈ [0, 1]n which joint

with the previous function α affect the residual demands.

Finally, the demands’ dependence on prices and types is given by a convex

combination of the aforementioned functions α and β. The balance of the corre-

sponding effects is given by the weights defining such a convex combination which

may depend on the prevailing prices and types. Thus, for each (t, p) ∈ T n × K
let us consider the parameter λ(t, p) ∈ [0, 1]. Then, the residual demand for each

store i is

di(t, p) = λ(t, p)αi(p) + (1− λ(t, p))βi(t).

Let us consider this particular formulation of the residual demand in the

game with incomplete information described in the previous section. Applying

Theorems 2.1 and 2.2 we have existence of equilibrium in distributional strategies

and also of approximate equilibrium in pure strategies.

Note that taking λ(t, p) = 1 for every (t, p) there is no effect of types and

therefore we have a game with no incomplete information. In this case, if we

consider a duopoly we can obtain as a particular situation the classical Bertrand’s

model resulting in the Bertrand paradox. In addition, as the next example

points out, this way of separating types and prices effects gives light to some

other interesting features of price competition even when one considers complete

information. Actually, the following price competition game highlights a way of

overcoming the Bertrand paradox that differs from those that have already been

considered in the literature. Furthermore, the same game allows us to illustrate

a monopolistic competition situation à la Chamberlin (1933,1937).
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Take n > 1 firms with the same technology and consumers in [0, 1] For a set

of consumers of measure m, the cost function for every firm is C(m) = cm+ F,

where F denotes the fixed costs and c < r. Firms choose prices in the compact

set [c, r].

Let t = (t1, . . . , tn) be a vector of types of firms. For each profile of prices

p = (p1, . . . , pn), the demand faced by firm i is di(t, p) = λαi(p) + (1− λ) βi(t),

where αi(p) = 1
n−1

(
1− pi∑

j∈N pj

)
and βi(t) = ti∑

j∈N tj
. Note that λ(·) is constant

and equals λ ∈ (0, 1). Then, the profit function for each firm i ∈ N = {1, . . . , n}
is given by

πi(t, p) = pi

(
λ
n−1

(
1− pi

p̂

)
+ (1−λ)ti

t̂

)
− C

(
λ
n−1

(
1− pi

p̂

)
+ (1−λ)ti

t̂

)
,

where p̂ =
∑

j∈N pj and t̂ =
∑

j∈N tj.

Some calculations show that the payoff function πi of firm i is strictly increas-

ing in the price selected by firm i. That is, ∂πi
∂pi

is positive for every i. Therefore,

independently of the number n of firms and of their types, the unique Nash equi-

librium in pure strategies is the profile where all the firms charge the reservation

price r.

In this situation, for the case of a duopoly, Bertrand paradox is overcome.

Moreover, when the number of firms is enlarged, the equilibrium is also attained

when all the firms chose the reservation price r > c, although the profits of every

i tend to zero when n increases. Therefore, this example also illustrates a situ-

ation of monopolistic competition in the sense that arbitrarily small firms have

market power. It is not an explicit commodity differentiation, but the approach

leading to the definition of the residual demands that underlies this imperfect

competition situation, even though the variables defining these demands may

be interpreted as a degree of “differentiation of firms”. Moreover, the result is

the same when there are no fixed costs and then we have constant returns to

scale. Thus, our remark is in accordance with Chamberlin (1933, 1937), who

pointed out, in contrast to Kaldor (1935), that what marks the contrast between

monopolistic competition and perfect competition is the shape of demand curve

and not the shape of the cost curve.
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4 Types affect demand only if prices are similar

In many markets the type variable becomes really effective or shapes the demand

functions only when prices belong to a certain threshold. In other words, when

prices differ too much the type is not a relevant variable and the firms that offer

the lowest price face all the demand. However, when prices are close, individuals

are more vulnerable to the abilities of firms to attract costumers.

To address this feature, let us consider again the game presented in Section 2

where demand di that firm i faces is a continuous function on types and prices

(t, p). Given a vector of prices p ∈ K that firms select, let m(p) denote the

minimum price. Now, let us consider a threshold ε > 0 and determine the new

residual demands as follows:

dεi (t, p) =

 di(t, p) if pi ≤ m(p) + ε

0 if pi > m(p) + ε

If the above demands are continuous, the additional assumptions stated in

Section 2 allow us to apply Theorems 2.1 and 2.2 obtaining existence of equili-

brium.

To illustrate how types affect demands only if prices are similar, we consider

the next two different scenarios where the demands satisfy the aforementioned

continuity property.

Consider two firms with types t1 and t2 for which the demand functions are

given as follows: If the difference between the prices is large (i.e., higher than a

given threshold) then the firm charging the lowest price gets all the demand, but

when this difference is small (i.e., below the given threshold) then the demand is

shared by both firms in such a way that the firm with the better type will face

a higher demand.

Without loss of generality we assume t1 ≥ t2. Let us fix a threshold ε > 0 and

consider the following residual demands:

d1(t1, t2, p1, p2) =


1 if p1 < p2 − ε
1−

(
p1−p2+ε

2ε

)1+t1−t2 if | p2 − p1 |≤ ε

0 if p1 > p2 + ε
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d2(t1, t2, p1, p2) =


0 if p1 < p2 − ε(
p1−p2+ε

2ε

)1+t1−t2 if | p2 − p1 |≤ ε

1 if p1 > p2 + ε

Note that the above demands are continuous functions and when there is a

tie they are determined by the types vector which avoids instability. We observe

that when the prices differ in less than ε, the firm with a higher type absorbs a

larger part of demand. In addition, when p1 < p2− ε firm 1 gets all the demand

(i.e., firms 2 sells nothing) but once it increases the prices so that | p1 − p2 |≤ ε,

its residual demand decreases very quickly, equivalently, the demand faced by

firm 2 increases promptly. Thus, the type variable not only provides stability in

the demands but also determine the shape of such demands. (See next figures).

0
1

2
3

4

0
1

2
3

4
0

0.2

0.4

0.6

0.8

1

p1
p2

d 1

0
1

2
3

4

0
1

2
3

4
0

0.2

0.4

0.6

0.8

1

p1
p2

d 2

In the figure on the left (resp. right) d1 (resp. d2) is represented taking

ε = 3/2, t1 = 1 and t2 = 4.

When t1−t2 = 1, we obtain the following Nash equilibrium: p1 =
(

3
√

17−5
8

)
ε =

0.92ε and p2 = p1+ε
3

= 0.64ε. However, when both firms have the same type, we

have that the equilibrium is p1 = p2 = ε. Note that when types are different

(t1 − t2 = 1) we obtain price dispersion. Moreover, if we understand price dis-

persion as the difference between both prices, such a dispersion is increasing

with ε. Note also that when types are equal, we find no dispersion of prices at

equilibrium.

We conclude that at equilibrium the difference between prices is less than the

threshold. Moreover, when types are distinct, then the prices can actually be

different and as we have obtained in the example, the difference depends on the

threshold. Thus, the type variable can explain not only price dispersion in the
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sense that at equilibrium different prices can arise, but also the degree of price

dispersion, that is, how different the equilibrium prices can be.

Let us state a final specification of the residual demands which separate prices

and types effects (as in the previous section) and, in addition, types affect de-

mands only if prices are similar.

Consider two firms which produce with null variable costs. Given types t =

(t1, t2) and prices p = (p1, p2), the residual demands are di(t, p) = λ(p)αi(p) +

(1− λ(p))βi(t), i = 1, 2, where

λ(p1, p2) =


1 if |p1 − p2| > ε

p2−p1
ε

if −ε ≤ p1 − p2 < 0

p1−p2
ε

if 0 ≤ p1 − p2 ≤ ε

αi(p1, p2) =


1 if pi < pj

1/2 if pi = pj

0 if pi > pj

and βi(t1, t2) =
ti

t1 + t2

That is, the demands faced by firm 1 and 2 are

d1(t1, t2, p1, p2) =



1 if p1 − p2 < −ε
p2−p1
ε

+
(
1− p2−p1

ε

)
t1

t1+t2
if −ε ≤ p1 − p2 < 0(

1− p1−p2
ε

)
t1

t1+t2
if 0 ≤ p1 − p2 ≤ ε

0 if p1 − p2 > ε

d2(t1, t2, p1, p2) = 1− d1(t1, t2, p1, p2)

As we show below, the equilibrium solution depends basically on the ratio

τ = t1/t2. Thus, first we calculate the equilibrium when types are different and

then when they are equal.

To obtain the best response functions when types differ, two cases are consid-

ered: t1 > t2 and t2 > t1, respectively.

For the case t2 > t1, some calculations allow us to write the best response

functions as follows:
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Reaction function for firm 1:



p1 = p2
2

+ ε
2

if 0 < p2 < ε t1
t2

p1 = p2
2

+ ε
2
t1
t2

if ε t1
t2
≤ p2 < ε(2 + t1

t2
)

p1 = p2 − ε if p2 > ε(2 + t1
t2

)

Reaction function for firm 2:



p2 = p1
2

+ ε
2

if 0 < p1 < ε

p2 = p1 if ε ≤ p1 < ε t2
t1

p2 = p1
2

+ ε
2
t2
t1

if ε t2
t1
< p1 < ε(2 + t2

t1
)

p2 = p1 − ε if p1 > ε(2 + t2
t1

)

ε/2 ε 2ε 4ε

ε

2

5ε

2

p1

p 2

The figure above represents the reaction functions for firm 1(red line)

and for firm 2 (blue line), taking t1=1, t2 = 2, and ε = 1.5

For the case t1 > t2, the best response functions are as follows:

Reaction function for firm 1:



p2 = 2p1 − ε if ε
2
< p1 < ε

p2 = p1 if ε ≤ p1 < ε t1
t2

p2 = 2p1 − ε t1t2 if ε t1
t2
< p1 < ε(1 + t1

t2
)

p2 = p1 + ε if p1 > ε(1 + t1
t2

)

16



Reaction function for firm 2:



p2 = p1
2

+ ε
2

if 0 < p1 < ε t2
t1

p2 = p1
2

+ ε
2
t2
t1

if ε t2
t1
< p1 < ε(2 + t2

t1
)

p2 = p1 − ε if p1 > ε(2 + t2
t1

)

Note that in this second situation, to simplify the expressions, the reaction

function of firm 1 is written with p2 in terms of p1.

ε/2 ε 2ε 3ε5ε/2

p1

p 2

Reaction functions for firm 1(red line) and for firm 2 (blue line),

taking in this case t2=1, t2 = 1, and ε = 1.5

Let τ = t1/t2. When τ > 1 the equilibrium of this game is p1 = ε
3

(1 + 2τ)

and p2 = ε
3

(2 + τ) . However, when τ < 1, the equilibrium is p1 = ε
3

(
1 + 2

τ

)
and

p2 = ε
3

(
2 + 1

τ

)
. Then, at equilibrium, the firm with higher type selects a higher

price. Moreover, the ratio of prices θ = p1/p2 does not depend on the threshold

ε and just depends on the ratio of types τ. To be precise, θ = 1+2τ
2+τ

if τ > 1

whereas θ = 2+τ
1+2τ

if τ < 1 instead. Therefore, τ and in turn the dispersion of

prices is uniformly bounded on types. As in the example 3, when both firms are

of the same type (i.e., τ = 1), they charge a same price equals to ε.

In the setting addressed in this section, when ε = 0 we have the classical

Bertrand’s price competition model. Moreover, when ε goes to zero, the contin-

uous demands dεi converge to the discontinuous residual demands which lead to
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the Bertrand paradox. Thus, our approach provides a way of solving smoothly

such a paradox. This is due to the presence of stability in competition, jointly

with the consideration that types matter only when prices are similar.

5 Concluding remarks

We have provided a game with incomplete information, where firms compete in

prices, for which we have shown existence of different kinds of equilibrium. We

have also specified residual demand functions, as particular cases of our model,

that lead to different games which are used to explain several topics in industrial

economics. We have considered the case when the effects of types and prices enter

separately in the residual demands, and also the situation where the types matter

only if the prices belong to a certain threshold. We have also drawn conclusions

regarding each case. For instance, we have provided alternative explanations to

those already present in the literature for the phenomenon of price dispersion

and also for the Bertrand’s paradox. In addition, our approach gives room to

compare the equilibria with complete and incomplete information.

The different specifications of the residual demands that we have considered

lead to a decrease in the competition in the sense that the equilibrium of the game

deviates from the competitive equilibrium and therefore allows for the analysis

of several issues where market power is strengthened through the type variable,

like the case of monopolistic competition.
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Janssen, M., Moraga-González, J.L. (2004): Strategic pricing, consumer search,

and the number of firms. Review of Economic Studies 71, 1089-1118.
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