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the network effect.
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1 Introduction

In two-sided markets, firms (platforms) are intermediaries between two categories of

agents, such that at least one category of agents generates inter-group network effects

over the other group of agents in the market. Accordingly, in these markets, the value

of participating in a certain platform (for a certain category of agents) depends not only

on its intrinsic characteristics but also on the number of agents (of a different category)

participating in the same platform.

Examples of two-sided platforms include: (i)media outlets, which allow for the interac-

tion between advertisers and readers; (ii) clubs, which allow for the interaction between

men and women; (iii) e-commerce platforms, which allow for the interaction between

buyers and sellers, and so on.

In the context of the examples above, real life reveals every day plethoric situations

in which platforms are simultaneously vertically and horizontally differentiated 4. In the

case of clubs, we observe that they are horizontally differentiated (including the type of

music they play or their environment) as well as vertically differentiated (quality of the

air, quality of the food, parking space). The same occurs in the case of e-commerce plat-

forms. Similarly, in the case of e-commerce platforms, they often differ along horizontal

dimensions (such as their aesthetics, the type of products they sell) as well as vertical

dimensions (like their usability, delivery times and advertising intensity).

In this paper, we aim at investigating the nature of price competition between plat-

forms that are both horizontally and vertically differentiated. Using the terminology

proposed by Di Comite et al. (2011), in the context of monopolistic competition, we may

say that our objective is to analyze price competition between verti-zontally differentiated

platforms.

Following the seminal works of Rochet and Tirole (2003) and Armstrong (2006), a

vast literature has analyzed the strategic aspects of competition between two-sided plat-

4See Gabszewicz and Resende (2012) for further details concerning horizontal and vertical

differentiation in the press industry.
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forms. In particular, following Armstrong (2006), a considerable number of works has

been devoted to the analysis of strategic interaction between horizontally differentiated

platforms (see, for example, Zacharias and Serfes, 2012; Gabszewicz et al., 2013).

In this paper, we combine two strands of literature: the literature on price competition

under horizontal and vertical differentiation and the literature on two-sided markets.

Concerning the first line of literature, Economides (1989) and Neven and Thisse (1990)

both analyze a two-dimensional vertical and horizontal differentiation model in which

firms compete on quality, variety and price.

Economides (1989) assumes that the variety (horizontal) choice takes place before

the quality (vertical) choice. Considering that marginal costs are increasing in quality

levels, he concludes that in equilibrium, we observe maximum variety differentiation and

minimum quality differentiation.

Neven and Thisse (1990) consider a three-stage game, in which firms first choose their

quality, afterwards their location, competing in prices at the end of the game. Normal-

izing the marginal costs to zero, the authors find a product equilibrium that exhibits

maximum differentiation on one dimension and minimum differentiation on the other.

The maximally differentiated dimension can either be the quality-or variety dimension.

More recently, other authors have addressed the issue of price competition in con-

ventional markets with horizontal or/and vertical differentiation (see, for example, Levin,

Peck and Ye (2009), Gabsewicz and Resende (2012), Gabszewicz and Wauthy (2014). The

present paper contributes to this literature by investigating how the nature of price com-

petition between verti-zontally differentiated firms can be affected by inter-group network

effects.

Our paper also contributes to the literature on two-sided markets. Most of the lit-

erature on this field has focused on the waterbed effects and tipping prevention (see for

example, Rochet and Tirole (2003); Armstrong (2006). A considerable literature has also

addressed the issue of price competition between horizontally differentiated platforms (see

for example, Zacharias and Serfes (2012); Gabszewicz et al. (2013). Using the Hotelling

framework proposed by Armstrong (2006), these works have studied pricing competition
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between horizontally differentiated platforms. When agents are allowed to participate in

only one platform, these papers (including Armstrong, 2006) show that the existence of

inter-group network effects often intensifies price competition between the platforms. To

the best of our knowledge, Gabszewicz et al. (2013) is the first paper that simultaneously

combines horizontal and vertical differentiation in two-sided markets. However, the au-

thors do not analyze price competition between the two-sided platforms. We contribute to

this literature by analyzing how the impact of inter-group network effects on equilibrium

outcomes depends on the interplay of vertical and horizontal differentiation.

In our model, we bring together the verti-zontal differentiation set-up developed by

Neven and Thisse (1990) and the two-sided market framework proposed by Armstrong

(2006). Platforms are assumed to be both horizontally and vertically differentiated. On

the horizontal dimension, we consider a Hotelling framework in line with the two previous

papers. In line with Armstrong (2006), we consider that firms are exogenously located

at the extremes of the Hotelling line. As in Neven and Thisse (1990) platforms are also

vertically differentiated and consumers have heterogeneous willingness to pay for quality.

In addition, we allow for inter-group network effects, with the objective of studying how

they affect pricing strategies of verti-zontally differentiated firms.

In the baseline model, we do not allow for price discrimination between sides (as an

illustrative example, the reader may consider of a club where men and women pay the

same entry fee, or a e-commerce platform, where sellers and buyers are required to pay the

same access fee in order to participate in the platform). The paper proposes a two-stage

game with the following structure. In the first stage, platforms set their access prices and

afterwards consumers decide which platform they are willing to join.

Our equilibrium analysis shows that the high-quality platform sets a higher access

price, serves a larger market share and earns a higher profit than the low-quality platform,

in line with standard vertical differentiation literature (see, for example, Tirole (2003).

We show that equilibrium outcomes depend on the strength of the inter-group network

effects vis-à-vis the magnitude of the intrinsic quality differences between the platforms.

Traditional literature that combines simultaneously horizontal and vertical differen-
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tiation argues that revenues of both firms increase as the quality of the better product

improves (see Shaked and Sutton, 1982).

Our finding establishes that this argument may be disrupt under horizontal domi-

nance since we find that, with the presence of network effects and under a subset of pure

horizontal dominance, as the quality of the product sold by the high-quality platform

increases more relatively to the product sold by its rival, the revenue of the low-quality

platform decreases. However, when the quality gap between platforms is too high (but

still in an horizontal dominance environment) follows that an increment on the quality

gap is also profit enhancing for the low-quality platform.

Thus, this evidence suggests that when the high-quality platform puts an excessive ef-

fort on increasing the vertical differentiation between platforms in a horizontal dominance

environment constitutes a strategy that benefits the low-quality platform.

Moreover we find that, under vertical dominance, the profit of the high-quality plat-

form is increasing with an increment on the intensity of the network effect, which consti-

tutes a distinct finding relatively to Armstrong (2006). Here the intuition relies on the

fact that when the members of both sides of the market attribute too much value to qual-

ity rather than variety, the high-quality platform benefits with a marginally increment on

the intensity of the network effect.

The rest of the paper is organized as follows. In the next section 2 we present the

model. Section 3 analyzes the model and section 4 characterizes the equilibrium outcomes.

Section 5 performs a comparative statics. Finally section 6 concludes. The proofs of the

Propositions and Lemmas are relegated to the Appendix.
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2 The model

Consider a two-sided market with two platforms, i ∈ {A,B} , and two sides, j ∈ {1, 2}.
The platforms operate with zero marginal costs5 and they are both horizontally and ver-

tically differentiated. As in Neven and Thisse (1990), we assume that the platforms differ

in two characteristics: (i) their location on the Hotelling line (horizontal differentiation),

and (ii) their intrinsic quality (vertical differentiation).

In particular, platform A is located at the left extreme of the Hotelling line
(
xA = 0

)
,

whereas platform B is located at the right extreme
(
xB = 1

)
. The intrinsic quality of

platform A is denoted by qA, whereas the intrinsic quality of platform B is qB, with

qB > qA. Then, platform A is the low-quality platform while platform B is the high-

quality platform.

In each side of the market, there is a unit mass of heterogeneous consumers. They

differ on their location, x, as well as on their quality valuation, y. Accordingly, in side j,

each consumer is identified by the pair (x, y) . As in Neven in Thisse (1990), we assume

that in each side of the market consumers are uniformly distributed over the unit square

[0, 1]× [0, 1] and we normalize their transportation costs to 1.

We depart from Neven and Thisse (1990) by introducing the possibility of positive

inter-group externalities. As in Serfes and Zacarias (2012), we assume that the intensity

of inter-group externalities is the same on both sides of the market, being measured by

the parameter α ≥ 0.

In the market side j ∈ {1, 2}, a consumer type (x, y) ∈ [0, 1] × [0, 1] obtains the

following utility from participating in platform A:

uAj (x, y) = v + yqA + αDA
k − pA − x,

where v ∈ R+ is suffi ciently high for the market to be covered in equilibrium, DA
k is the

demand of platform A on the other side (k 6= j) and pA is the access price charged by

5Our results would remain unchanged under constant and symmetric marginal costs. A

similar assumption has been adopted by Neven and Thisse (1990), among others.
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platform A, which applies to both sides of the market (price discrimination between sides

is not allowed).6

Analogously, when participating in platformB, a side-j consumer of type (x, y) obtains

the following utility:

uBj (x, y) = v + yqB + αDB
k − pB − (1− x) ,

where DB
k is the demand of platform B on the other side (k 6= j) and pB is the access

price charged by platform B to both sides of the market.

Notice that the intensity of the network effect, captured by α, influences both variety

(the degree of horizontal differentiation) and quality (the degree of vertical differentiation).

In order to study equilibrium outcomes when platforms are simultaneously horizontally

and vertically differentiated, we consider a game with the following timing: in the first

stage, platforms simultaneously set access prices for both sides; in the second stage,

consumers in each side simultaneously decide which platform to join. The game is solved

by backward induction.

We start by investigating the specification of demand resulting from the second stage.

Afterwards, we analyze platforms’equilibrium price choices, in the first stage. Through

the paper, we assume that the inter-group externality is relatively weak in order to avoid

market tipping.

Assumption 1 (Weak inter-group externality) The inter-group externality is rela-

tively weak: α < 1
2
.

3 Demand and profits

In side j, the consumer type (x̃j (y) , y) for whom

uAj (x̃j (y) , y) = uBj (x̃j (y) , y)

6If price discrimination was allowed, we would expect the symmetry of the model to induce

no discrimination in equilibrium.
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is indifferent between participating in platform A or platform B. Solving the previous

equation for x̃j (y) , we obtain that, for a given y, the indifferent consumer in side j is

located at:

x̃j (y) = 1
2

+ pB−pA
2

+
α(DAk −DBk )

2
− q

2
y, (1)

where q represents the quality gap, i.e. q ≡ qB − qA.

Taking into consideration that the market is fully covered, DB
k = 1 − DA

k and that

consumers formulate self-fulfilled expectations about the demand on the other side of

the market, with DA
k =

1∫
0

x̃k (y) dy for x̃ (yj) ∈ [0, 1] ,7 equation (1) can be re-written as

follows:

x̃j (y) =
1

2
+
pB − pA

2
+
α(2DA

k − 1)

2
− q

2
y, (2)

or equivalently:

ỹj (x) =
1

q
+
pB − pA

q
+
α(2DA

k − 1)

q
− 2

q
x. (3)

The previous equations show that for a given vector of prices
(
pA, pB

)
the position of the

indifferent consumer ỹj evolves linearly and negatively with x, as
∂ỹj(x)

∂x
= −2

q
< 0.

Consider two types of consumers: (x, y) and (x́, ý) , with x́ < x, meaning that the

second consumer is located closer to firm A. The two consumers are only both indifferent

between participating in platform A and B if the second consumer has a higher willingness

to pay for quality than the first one i.e. ý > y.

Note that, if, for a given x, we have ỹj (x) ∈ [0, 1], for such x, side j consumers located

at yj ∈ [0, ỹj(x)] participate in platform A, whereas those located at yj ∈ (ỹj(x), 1]

participate in platform B. In other words, consumers above the line (3) participate in

platform B, whereas those below that line prefer to participate in platform A. If we have

ỹ (xj) < 0∀x ∈ [0, 1] , resp. ỹ (xj) > 1∀x ∈ [0, 1] , then, all consumers in side j buy from

platform B, resp. platform A.

The figure 1 below illustrates the choice of consumers between the two platforms for

7This formulation means that an agent of a side j (j = 1, 2) can interact with an agent of an

opposite side k (k = 1 when j = 2 or k = 2 when j = 1), for any given variety x and quality y

within the square [0, 1]× [0, 1] .
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different pairs of prices
(
pA, pB

)
.

Figure 1: Consumers choices between platforms under vertical dominance

Considering the position of the indifferent consumer line, it is now possible to obtain

the analytical expressions of the demands of platform A and platform B, in side j, as a

function of firms´ access prices, pA and pB.

As in Neven in Thisse (1990), in order to obtain these analytical expressions we first

need to distinguish two cases according to the relative importance that consumers attach

to vertical differentiation vis-à-vis horizontal differentiation.

Definition 1 (Horizontal Dominance versus Vertical Dominance)

(i) Horizontal dominance corresponds to an environment where the intrinsic quality

gap between the platforms, q, is relatively low, in particular, q < 2.

(ii) Instead, when the intrinsic quality gap is suffi ciently large, q > 2, Vertical domi-

nance prevails.

Proof. As in Neven and Thisse (1990), horizontal (resp. vertical) dominance arises

when
∣∣∣∂ỹ(x)∂x

∣∣∣ > (<)1, or equivalently, q < (>)2.

In order to better understand the intuition and the need for the distinction pointed

out in Definition 1, consider the two cases of figure 2.

For the values of the parameters considered in figure 18(b), we have
∣∣∣∂ỹ(x)∂x

∣∣∣ < 1, or

equivalently q > 2. As in this case, the intrinsic quality gap between the two firms is
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relatively large, Neven and Thisse (1990) introduce the concept of vertical dominance to

denote the domain of parameters for which
∣∣∣∂ỹ(x)∂x

∣∣∣ < 1.

However, when q < 2, or equivalently,
∣∣∣∂ỹ(x)∂x

∣∣∣ > 1, the intrinsic quality gap between

the firms is relatively low and horizontal dominance prevails. In that case, for the same

price vector
(
pA, pB

)
we would obtain a different demand configuration as illustrated in

the figure 2(a).

Figure 2: Horizontal versus vertical dominance

In light of this, for each side of the market j, we now define the analytical expressions

of the platforms’demands as a function of their access prices
(
pA, pB

)
, under horizontal

and vertical dominance8.

We denote by Di|V D
j

(
pA, pB

)
the demand of platform i in side j, under vertical domi-

nance, with:

8See Appendix A in section 7.1 for further details on the computation of the analytical

expression of the demand functions of each platform, under horizontal and vertical dominance.
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D
A|V D
j

(
pA, pB

)
=

0 if pA − pB > 1− α;

q−α(1−α+pB−pA)−
√
q[q−2α(1−α+pB−pA) ]

2α2
if −(1 + α) + 2α

q
< pA − pB ≤ 1− α;

1
q−2α

(
pB − pA − α

)
if 1 + α− q − 2α

q
≤ pA − pB ≤ −(1 + α) + 2α

q
;

−q+α(1+α−pB+pA+q)+
√
q[q−2α(1−α−pB+pA+q) ]

2α2
if −q − (1− α) ≤ pA − pB < 1 + α− q − 2α

q
;

1 if pA − pB < −q − (1− α),

(4)

and DB|V D
j

(
pA, pB

)
= 1 − D

A|V D
j

(
pA, pB

)
. Analogously, we denote by Di|HD

j

(
pA, pB

)
,

the demand of platform i in side j, under horizontal dominance, with:

D
A|HD
j

(
pA, pB

)
=

0 if pA − pB > 1− α
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]

2α2
if 1− α− q + qα

2
< pA − pB ≤ 1− α

1
2

(
1 + pB−pA

1−α −
q

2(1−α)

)
if −(1− α)− qα

2
≤ pA − pB ≤ 1− α− q + qα

2

−q+α(1+α−pB+pA+q)+
√
q[q−2α(1−α−pB+pA+q) ]

2α2
if −q − (1− α) ≤ pA − pB < −(1− α)− qα

2

1 if pA − pB < −q − (1− α)

.

(5)

and DB|HD
j

(
pA, pB

)
= 1−DA|HD

j

(
pA, pB

)
.

The demand functions DA|V D
j

(
pA, pB

)
and DA|HD

j

(
pA, pB

)
must be decreasing and

continuous functions of the platforms’own prices. However, they are not globally concave
9.

In the particular case of vertical dominance, the demand is linear for price vectors(
pA, pB

)
such that:

1 + α− q − 2α

q
≤ pA − pB ≤ −(1 + α) +

2α

q
.

When −(1 +α) + 2α
q
< pA− pB ≤ 1−α, the demand DA|V D

j

(
pA, pB

)
is strictly convex in

9The formal proof of these properties is straightforward, given the analytical expressions of

demands (4) and (5) .
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pA. Analogously, when:

−q − (1− α) ≤ pA − pB < 1 + α− q − 2α

q
,

the demand DB|V D
j

(
pA, pB

)
is strictly convex in pB.

In the particular case of horizontal dominance, the demand is linear for price vectors(
pA, pB

)
such that:

−(1− α)− qα

2
≤ pA − pB ≤ 1− α− q +

qα

2
.

When 1 − α − q + qα
2
≤ pA − pB < 1 − α, the demand DA|HD

j

(
pA, pB

)
is strictly convex

in pA. Analogously, when:

−q − (1− α) ≤ pA − pB < −(1− α)− qα

2
,

the demand DB|HD
j

(
pA, pB

)
is strictly convex in pB.

Given the demands faced by each platform in each sided of the market, it is now

possible to obtain the profit of the two platforms as follows:

πi(pA, pB) = piDi
1(p

A, pB) + piDi
2(p

A, pB),

where Di
j(p

A, pB) = D
A|V D
j

(
pA, pB

)
, in the case of vertical dominance, and Di(pA, pB) =

D
A|HD
j

(
pA, pB

)
, in the case of horizontal dominance.

The equations (4) and (5) imply symmetric demands in the two sides of the market:

Di
1(p

A, pB) = Di
2(p

A, pB) = Di(pA, pB),

thus, the platforms’profit can be computed as follows:

πi(pA, pB) = 2piDi(pA, pB), i ∈ {A,B} .

Since the demand functions Di(pA, pB) are not globally concave, it is necessary to study

under which conditions the profit of each platform is quasi-concave with respect to its

access price.
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Caplin and Nalebuff (1991) in general and, in particular, Neven and Thisse (1990)

for the case of product differentiation in two dimensions, provide suffi cient conditions

for the existence of multiple equilibria in pure strategies for discrete choice models of

differentiated product markets.

Without network externalities, our manuscript reduces to a model which satisfies the

assumptions in Neven and Thisse (1990).

Since our model incorporates network effects, that are present for any given level of

quality and variety, we must apply mathematical techniques to prove the quasi-concavity

of the profit functions.10 Nonetheless to say, the following proof is the central point of

our manuscript.

Lemma 1 (Quasi-concavity of the profit function)

For any pair combination (α, q), the profit functions of platforms A and B are quasi-

concave in pA and pB both under vertical and horizontal dominance, respectively.

Proof. See Appendix B in section 7.2.

This Lemma brings a relevant contribution to the current literature because proves

that the payoff functions of the active players on the market are globally quasi-concave

in a multidimensional product differentiation environment with the presence of network

effects.

Therefore, the first order conditions of the platforms’maximization problem intersect

at least once which guarantees that the first order conditions associated with the profit

maximization problem are suffi cient to characterize firms’optimal pricing choices11.

We also examined the shape of the profit functions for a grid of values of the relevant

parameters.

10To the best of our knowledge, our manuscript is the first proving the quasi-concavity of the

profit function of the active platforms under the presence of network effects.
11Indeed, as you can check further, applying the theorem of Debreu, Glicksberg and Fan (1952)

allows us to prove the existence of multiple interior pure-strategy Nash equilibria.
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Figures 3(a) and 3(b) show a possible shape of the demand and figures 4(a) and 4(b)

show a possible shape of the profit function of the low-quality platform A, for different

levels of the inter-group externality under horizontal and vertical dominance, respectively.

Figure 3(a) Figure 3(b)

Figure 4(a) Figure 4(b)

As expected, the above figures reinforce the intuition that the profit functions are quasi-

concavity on its prices domain.
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4 Equilibria

In the first stage, platforms take decisions on access prices anticipating consumers behavior

in the subsequent stage. Accordingly, the problem of platform i writes as follows:

max
pi

2piDi(pA, pB),

with i = A,B and Di(pA, pB) = DA|V D (pA, pB) in the case of vertical dominance, and
Di(pA, pB) = DA|HD (pA, pB) in the case of horizontal dominance. Then, in line with
Neven and Thisse (1990) [22], we should determine the equilibrium prices as a function

of the product characteristics.

This leads us to distinguish between six types of equilibria, namely three under vertical

dominance and three under horizontal dominance.

By other words, for each kind of dominance, we have the following types of equilibria:

(i) case/subgame 1 - the equilibrium occurs on the linear segments of DA and DB;

(ii) case/subgame 2 - the equilibrium occurs in the strictly convex segment of DA and

in the strictly concave segment of DB;

(iii) case/subgame 3 - the equilibrium occurs in the strictly concave segment of DA

and in the strictly convex segment of DB.

We start by studying the price stage equilibrium for the linear segment of the demand

of platforms A and B, for any combination of the parameters α and q (corresponding

to case 1 when both firms are active in the market, which is always the case under

Assumption 1).

4.1 Pure horizontal dominance equilibrium

We firstly describe the region where the equilibrium candidate under vertical dominance

exists, corresponding to an equilibrium occurring under the circumstances described at

figure 2(a).
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Below, we fully characterize the correspondent equilibrium candidate.

Proposition 2 (Equilibrium under horizontal dominance)

Let q < 6(1−α)
4−3α . The equilibrium outcomes are described as follows:

pA
∗

= 1− α− q
6
, pB

∗
= 1− α + q

6
;

DA∗ = 1
2

[
1− q

6(1−α)

]
, DB∗ = 1

2

[
1 + q

6(1−α)

]
;

πA
∗

= 1
36
[q−6(1−α)]2

1−α , πB
∗

= 1
36
[q+6(1−α)]2

1−α .

Proof. See Appendix B in section 7.2.

Comparing pA
∗
and pB

∗
, it can be easily checked that for any (α, q) , we always obtain

pB
∗
> pA

∗
, meaning that the access fee quoted by the high-quality platform is always

higher than the access fee charged by the low-quality platform.

In horizontal dominance, equilibrium prices are affected by the intensity of inter-group

network effects. It is also worth noting that the high-quality platform always has a higher

market share than the low-quality platform, for any (α, q) . Since the former also charges

a higher price than the latter, we always have πB
∗
> πA

∗
.

4.2 Pure vertical dominance equilibrium

We firstly describe the region where the equilibrium candidate under vertical dominance

exists, corresponding to an equilibrium occurring under the circumstances described at

figure 2(b). Below, we fully characterize the correspondent equilibrium candidate.

Proposition 3 (Equilibrium under vertical dominance)

Let q > 1
2

(
3− 2α +

√
9− 4α(9− α)

)
. The equilibrium outcomes are described as

follows: 
pA
∗

= q−α
3
, pB

∗
= 2(q−α)

3
;

DA∗ = 1
3
− 2α

3(q−2α) , D
B∗ = 2

3
+ 2α

3(q−2α) ;

πA
∗

= 2(q−α)(q−4α)
9(q−2α) , πB

∗
= 8(q−α)2

9(q−2α) .
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Proof. See Appendix B in section 7.2.

Comparing pA
∗
and pB

∗
, it can be easily checked that for any (α, q) , we always obtain

pB
∗
> pA

∗
, meaning that the access fee quoted by the high-quality platform is always

higher than the access fee charged by the low-quality platform. In vertical dominance,

equilibrium prices are affected by the intensity of inter-group network effects. However,

the downward pressure over prices is stronger under horizontal dominance. The intuition

behind this result is analyzed in the section 5. It is also worth noting that the high-quality

platform always has a higher market share than the low-quality platform, for any (α, q) .

Since the former also charges a higher price than the latter, we always have πB
∗
> πA

∗
.

4.3 Intermediate equilibrium

After characterizing the equilibrium candidates emerging from the interaction of the linear

segments of the demands of platforms A and B (case 1 ), we verify the other interior

equilibrium candidates emerging from case 2, for each type of dominance, corresponding to

the circumstances described in figure 1(b).12. Figure 5 shows the price domain conditions

under pure vertical dominance (blue region) and under pure horizontal dominance (yellow

region), where each equilibrium candidate is an effective equilibrium. The white region

corresponds to the equilibrium candidate occurring under the circumstances described in

12As Neven and Thisse (1990) point out, since platform A is the low-quality platform, a situa-

tion described as in figure 17(d) never arises at the equilibrium. This implies, in our manuscript,

that under horizontal dominance for −(1 − α) − q ≤ pA − pB < (1 − α) − q and under vertical
dominance for −q − (1 − α) ≤ pA − pB < 1 + α − q − 2α

q , there is no price equilibrium since the

prices solving the first order conditions are incompatible with the corresponding price domain

condition.
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figure 1(b).

Figure 5

For such values, the equilibrium occurs in the strictly convex segment of DA and in the

strictly concave segment of DB. The profit of platform A and platform B are given by:

πA =
pA
[
q − α(1− α + pB − pA)−

√
q [q − 2α(1− α + pB − pA) ]

]
α2

,

πB = 2pB

1−

[
q − α(1− α + pB − pA)−

√
q [q − 2α(1− α + pB − pA) ]

]
2α2

 .

Given the quasi-concavity of the profit function, an equilibrium price candidate is al-

ways an equilibrium as long as the price domain condition is verified. Under horizontal

dominance, the equilibrium is verified for:

1− α− q + qα
2
< pA∗ − pB∗ ≤ 1− α,

and under vertical dominance, the equilibrium is verified for:

−(1 + α) + 2α
q
< pA∗ − pB∗ ≤ 1− α.

We are not able to analytically solve the model for this "intermediate" equilibrium can-

didate13.

However, the proposed theorem of Debreu, Glicksberg and Fan (1952) allows us to

conclude that an equilibrium exists for this case (see, for example, pp. 34, of Fudenberg

and Tirole, 1991).

13See Appendix C of section 7.3 for details on the best reply functions of both platforms.
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Theorem 4 (Debreu, Glicksberg and Fan (1952)) Consider a strategic-form game:

(i) whose strategy spaces Si are nonempty compact convex subsets of an Eucledian space.

If the payoff functions are (ii) continuous and (iii) quasi-concave in si, there exists a

pure-strategy Nash equilibrium.14

The proof towards Lemma 1 ratifies the above Theorem in a context of a two-dimensional

product differentiation environment with the presence of network effects on the market.

The following conclusion is, therefore, straightforward.

Remark 1 (Intermediate equilibrium)

For any pair combination (α, q), there exists a price equilibrium candidate in the

strictly convex segment of DA and in the strictly concave segment of DB. The equi-

librium candidate must be an equilibrium:

(i) under horizontal dominance, for 6(1−α)
4−3α < q < 2;

(ii) under vertical dominance, for 2 < q < 1
2

(
3− 2α +

√
9− 4α(9− α)

)
.

Proof. First, the existence of a price equilibrium candidate for such domain region is

proved in Theorem 4 (and observe the proof of Lemma 1 relatively to the convex (concave)

segment of the profit function of platform A (platform B) on each type of dominance); sec-

ondly, the boundaries on each type of dominance result from Proposition 2 and Proposition

3.

5 Comparative Statics

In this section we analyze how the magnitude of the quality gap q, and the intensity of

the inter-group externality α, affect equilibrium outcomes.

14Debreu (1952) used a generalization of this theorem to prove that competitive equilibria

exist when consumers have quasi-convex preferences.
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5.1 Impact of the quality gap

Regarding the impact of the quality gap on equilibrium prices, we obtain that the price

of the high-quality platform always increases with the magnitude of the quality gap.

Everything else the same, an increase in q makes platform B relatively more attractive

than platform A and, therefore, firm B is able to increase its price for all (q, α) .

As far as concerns firm A, under horizontal dominance, an increase in q reduces the

price of firm A. Since q is not too high (meaning that products are not very differentiated

on the vertical dimension), the low-quality firm reduces its price after an increase in q.

In contrast, under vertical dominance, the price of the low-quality gap also increases

with q. In that case, products are already significantly differentiated in the vertical di-

mension and, thus, an increase in q makes products even more differentiated, relaxing

price competition, which is line with standard vertical differentiation literature (see, for

example, Shaked and Sutton (1982). Despite the fact that both prices are increasing with

q, the price of the high-quality platform always increases more than the price of its rival

since ∂pB
∗

∂q
> ∂pA

∗

∂q
> 0.

Regarding the impact of the quality gap on equilibrium market shares, we obtain that

under horizontal dominance, we have ∂DA
∗

∂q
= − 1

12(1−α) < 0, implying ∂DB
∗

∂q
> 0 (since the

market is full covered). Following an increase in q, the high-quality platform becomes more

attractive than the low-quality platform and it is able to increase its market share, despite

the fact that the price gap pB
∗ − pA∗ is increasing with α. However, when the quality gap

is very large, it follows ∂DA
∗

∂q
= 2α

3(q−2α)2 > 0, implying ∂DB
∗

∂q
< 0. This is so, because the

high-quality platform increases its price substantially more than the low-quality platform.

Lemma 4 pp.8, from Shaked and Sutton (1982) establishes that "revenues of both firms

increase as the quality of the better product improves".

Considering the horizontal dominance environment and evaluating the impact of q

on the equilibrium profits of platforms A and B, we get that: (i) for q ∈
(
0, 3

2
(1− α)

)
follows:

∂πA
∗

∂q
< 0;

∂πB
∗

∂q
> 0,
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and (ii) for q ∈
(
3
2

(1− α) , 6(1−α)
4−3α

)
we obtain that:

∂πA
∗

∂q
> 0;

∂πB
∗

∂q
> 0.

Then, under horizontal dominance (q < 2) and when the quality gap is low, the revenue

of the high-quality platform B increases as the quality of the better product improves and

the revenue of the low-quality platform A decreases as the quality of the better product

improves. However, when the quality gap is suffi ciently strong, the revenue of the high-

quality platform B increases as the quality of the better product improves and the revenue

of the low-quality platform A also increases as the quality of the better product improves.

This result is not only distinct from Shaked and Sutton (1982) but also complements

Neven and Thisse (1990) since they did not take into consideration the presence of network

effects influencing simultaneously both variety and quality.

This evidence suggests that when the high-quality platform B puts an excessive effort

on increasing the vertical differentiation between platforms in a horizontal dominance

environment constitutes a strategy that benefits it’s rival, the low-quality platform A.

Under vertical dominance, our results are similar to the findings of Shaked and Sutton

(1982). The equilibrium profit of the low-quality platform A is always increasing with q

(since the equilibrium price and market share are increasing with q).However, at platform

B, the market shares are decreasing in q. However, it follows that the positive price effect

more than compensates the negative demand effect of the high-quality platform.

Lemma 5 (Impact of vertical differentiation)

Under horizontal dominance:

(i) for q < 3
2

(1− α) follows that ∂πA
∗

∂q
< 0;

(ii) for q ∈
(
3
2

(1− α) , 6(1−α)
4−3α

)
follows that ∂πA

∗

∂q
> 0.

Proof. See Appendix B in section 7.2.

Intuitively, for suffi ciently lower levels of the quality gap between platforms, when the

quality of the better product marginally increases leads to a reduction on the profit of
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the low-quality platform because on that case we are in an "environment" of horizontal

dominance such that agents on both sides of the market attribute much more value to

variety rather than quality.

Thus, on this case, the result of Shaked and Sutton (1982) is disrupt. Neven and

Thisse (1990) are not able to capture our finding since their model does not consider the

presence of inter-group externalities.

5.2 Impact of the intensity of the inter-group externality

In what concerns the impact of the intensity of the inter-group network effect on equilib-

rium prices, we obtain that the standard results in two-sided markets hold. In particular,

under horizontal dominance, we have that:

∂pA
∗

∂α
=
∂pB

∗

∂α
= −1.

In line with Armstrong (2006), when the inter-group network effect is suffi ciently weak

consumers benefit from lower prices due to inter-group network effects (when these effects

take place, firms set discounts in one side of the market with the objective of enhancing

demand in opposite side of the market). In line with the seminal literature on two sided

markets, we obtain that such price reduction is increasing with the intensity of network

effects.

Under vertical dominance, the equilibrium prices are also negatively affected by the

intensity of the inter-group network effect. However, prices decrease less relatively to the

case of horizontal dominance and the price of high-quality platform is more responsive

relatively to a change on the level of the inter-group externality since:

∂pA
∗

∂α
= −1

3
;
∂pB

∗

∂α
= −2

3
.

Regarding the impact of the inter-group network intensity on equilibrium market

shares, we obtain that for horizontal dominance yields ∂DA
∗

∂α
< 0, implying ∂DB

∗

∂α
> 0,

since DB∗ = 1−DA∗. More precisely, ∂D
A∗

∂α
= − 1

12
q

(α−1)2 < 0.
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Hence, an increase in the intensity of inter-group network externalities leads increases

market concentration, favoring the high-quality platform. When α increases, consumers

value more the number of consumers (on the other side) participating in each platform

and therefore the high-quality platform becomes more attractive than the rival (recall

that the former always has a higher market share than the low quality platform).

For vertical dominance, equilibrium market shares are responsive to the inter-group

externality on the same way since ∂DA
∗

∂α
< 0 and ∂DB

∗

∂α
> 0.

Regarding the impact of α on equilibrium profit, for q ≤ 6(1−α)
4−3α , it is easy to see that

the equilibrium profit of the low-quality platform is decreasing with α (since both the

price and the market share of the platform decrease with the intensity of the inter-group

network effect).

In the case of platform B, the two effects are moving in opposite direction but the

price effect is dominant and the profit of platform B is also decreasing with α. Thus, it

follows that ∂πA
∗

∂α
< 0 and ∂πB

∗

∂α
< 0.

For vertical dominance, the equilibrium profit of the low-quality platform is decreasing

with α (since both the price and the market share of the platform decrease with the

intensity of the inter-group network effect).

In the case of platform B, the two effects are moving in opposite direction. The

dominant effect here is the demand effect and, thus, the profit of platform B is increasing

with α.

Accordingly, the following Lemma holds.

Lemma 6 (Impact of the inter-group externality)

Under vertical dominance, the profit of the high-quality platform B is increasing with

an increment on the intensity of the network effect.

Proof. See Appendix B in section 7.2.

The fact that equilibrium profits are decreasing with α is in line with Armstrong (2006)

23



and it results from the fact that an increase in the intensity of the inter-group network

effect intensifies price competition between the two platforms. However our model disrupts

this standard result of two-sided markets.

Intuitively, for suffi ciently higher levels of the quality gap between platforms, we fall in

the case of pure vertical dominance, that is, agents on both sides of the market attribute

much more value to quality rather than variety. Thus, it is not surprising that the active

platform with higher quality is the only platform that, under these circumstances, benefits

with a marginally increment on the intensity of the network effect.

Obviously, Armstrong (2006) does not capture this effect since the adaptation of

Hotelling (1929) model does not able researchers to analytically capture the key dis-

tinction between vertical and horizontal dominance, which can be achievable using Neven

and Thisse (1990) model.

6 Conclusions

This paper analyzes price competition between verti-zontally differentiated platforms. In

light of this, we extend the pure horizontal model of two-sided markets presented by

Armstrong (2006), allowing for vertical differentiation between the platforms.

Our verti-zontal differentiation set-up is built on a simplified version of the model

proposed by Neven and Thisse (1990). While the latter, allows for quality choice and

endogenous location, we take these choices as exogenously given, allowing instead for the

existence of inter-group network effects. Our equilibrium analysis shows that equilibrium

outcomes depend on the intensity of the inter-group network effects vis-à-vis the gap in

the quality of the platforms.

Considering the case in which price discrimination between sides is not allowed, we find

that regardless of the intensity of network effects, we find that the high-quality platform

always quotes a higher price and attracts a larger fraction of consumers than the low-

quality platform. The intuition of this result is that, with a two-dimensional product
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differentiation and considering only a discriminatory regime on the quality attribute, a

low-quality platform cannot be a dominant intermediary on the market.

Moreover we find that, under horizontal dominance, the profit of the low-quality plat-

form decreases as the quality of the better product improves when the quality gap between

platforms is suffi ciently small. This result contrasts with Shaked and Sutton (1982) sem-

inal contribution.

Finally, under vertical dominance, we find that the profit of the high-quality platform

is increasing with an increment on the intensity of the network effect, which disrupts

the evidence from Armstrong (2006) in which network effects tend to put a downward

pressure over equilibrium profits of both active rivals. This is due to the fact that we

incorporate an exogenous discrimination on quality between the two platforms.

Other extensions of this model are worthwhile as well, addressing issues such as (par-

tial) multi-homing, cost asymmetries, the role of imperfect information, dynamic pricing,

endogenous locations and qualities, among others.
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7 Appendix

7.1 Appendix A - Demand functions

Consider the case of vertical dominance. The configuration of demand for different price

vectors
(
pA, pB

)
is illustrated in figure 1 (of section 3). The figure shows that the specifi-

cation of the demand function, depends on the magnitude of the price gap pA − pB.

First, notice that from expressions (2) and (3), follows the extreme situations:
x̃j (0) = 1

2
+ pB−pA

2
+

α(2DAk −1)
2

;

x̃j (1) = 1
2

+ pB−pA
2

+
α(2DAk −1)

2
− q

2
;

ỹj (0) = 1
q

+ pB−pA
q

+
α(2DAk −1)

q
;

ỹj (1) = 1
q

+ pB−pA
q

+
α(2DAk −1)

q
− 2

q
.

In figure 1(a), all consumers prefer to buy from platform B. In that case, the price gap

must high enough so that ỹj (0) < 0, or equivalently, pA − pB > 1 − α. For price vectors(
pA, pB

)
such that pA − pB > 1− α, we have DA|V D

j

(
pA, pB

)
= 0.

In figure 1(b) some consumers start buying from platform A, although the ones located

closer to platform B, always prefer this firm, regardless of their willingness to pay for

quality, y ∈ [0, 1] . In that case, the price gap pA − pB must be such that 0 ≤ ỹj (0) < 1

and ỹj (1) < 0. These inequalities impose the follow condition on the price gap in the case

of vertical dominance:

−(1− α) + 2α
q
< pA − pB ≤ 1− α, (6)

with q > 2 under vertical dominance. When (6) holds, the demand specification is given

by:

D
A|V D
j

(
pA, pB, DA

)
=

x̃j(0)×ỹj(0)
2

⇔

D
A|V D
j

(
pA, pB, DA

)
= 1

q

(
1
2

+ pB−pA
2

+ αD
A|V D
j − α

2

)2
⇔

D
A|V D
j

(
pA, pB, DA

)
= 1

4q

[
1 + α

(
2D

A|V D
j − 1

)
+ pB − pA

]2
.

Solving with respect to DA|V D
j yields:

D
A|V D
j

(
pA, pB

)
=

q−α(pB−pA+(1−α) )±
√
q[q−2α(pB−pA+1−α )]

2α2
.
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The simulation demonstrates that, for the convex segment of the demand of the low-

quality platform, the specification of the demand is given by:

D
A|V D
j

(
pA, pB

)
=

q−α(pB−pA+(1−α) )−
√
q[q−2α(pB−pA+1−α )]

2α2
.

In figure 1(c), we observe that consumers with higher willingness to pay for quality prefer

platform B over platform A. However, there are consumers in all locations x ∈ [0, 1] par-

ticipating in platform A. Accordingly, the following conditions must be verified: ỹj (0) ≤ 1

and ỹj (1) ≥ 0, leading to the following conditions on the price gap:

1 + α− q − 2α
q
≤ pA − pB ≤ −(1− α) + 2α

q
.

In that case, the demand specification is given by:

D
A|V D
j

(
pA, pB

)
=

ỹj(0)+ỹj(1)

2
= 1

q−2α
(
pB − pA − α

)
.

In figure 1(d), the price gap pA − pB is such that all consumers located closer to firm

A, prefer to participate in this platform, regardless of their willingness to pay for quality

y ∈ [0, 1] . Hence, ỹj (0) > 1 and 0 < ỹj (1) ≤ 1, yielding:

−q − (1− α) ≤ pA − pB < 1 + α− q − 2α
q
.

In that case, the demand specification can be obtained by computing:

D
A|V D
j

(
pA, pB, DA

)
= 1− [1−x̃j(1)]×[1−ỹj(1)]

2
⇔

D
A|V D
j

(
pA, pB, DA

)
= 1− 1

4q

{[
1 + pA − pB + α

(
1−DA|V D

j

)]2
− q2

}
.

Solving with respect to DA|V D
j yields:

D
A|V D
j

(
pA, pB

)
=

α(pA−pB+1+α+q )−q±
√
q[q−2α(1−α−pB+pA+q )]

2α2
.

The simulation demonstrates that, for the convex segment of the demand of the low-

quality platform, the specification of the demand is given by:

D
A|V D
j

(
pA, pB

)
=

α(pA−pB+1+α+q )−q+
√
q[q−2α(1−α−pB+pA+q )]

2α2
.

Finally, in figure 1(e) all consumers prefer to participate in platform A, yielding:

D
A|V D
j

(
pA, pB

)
= 1.
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For this to occur, we must have ỹj(1) > 1, yielding pA−pB < −q−(1−α). In light of this,

we have that the demand function DA|V D
j

(
pA, pB

)
under vertical dominance, corresponds

to a piecewise function with the following specification:

D
A|V D
j

(
pA, pB

)
=

0 if pA − pB > 1− α;

q−α(1−α+pB−pA)−
√
q[q−2α(1−α+pB−pA) ]

2α2
if −(1 + α) + 2α

q
< pA − pB ≤ 1− α;

1
q−2α

(
pB − pA − α

)
if 1 + α− q − 2α

q
≤ pA − pB ≤ −(1 + α) + 2α

q
;

−q+α(1+α−pB+pA+q)+
√
q[q−2α(1−α−pB+pA+q) ]

2α2
if −q − (1− α) ≤ pA − pB < 1 + α− q − 2α

q
;

1 if pA − pB < −q − (1− α).

Since each side of the market is assumed to be covered by the two firms, platform’s B

demand function is simply:

D
B|V D
j

(
pA, pB

)
= 1−DA|V D

j

(
pA, pB

)
.

The same comments apply, mutatis mutandis, when obtaining the specification of the

demand function under horizontal dominance. In particular, it is easy to see that the

monopoly outcomes occur under exactly the same conditions. Similarly, when all con-

sumers located closer to platform B (resp. platform A) participate in this platform,

regardless of their willingness to pay for qualities (i.e. the configuration of firms’mar-

ket shares under horizontal dominance is similar to the one depicted in figure 1(b) (resp.

figure 1(d) under vertical dominance), the computation of platforms’demand under hori-

zontal dominance is analogous to the case of vertical dominance. In particular, we obtain

that the expressions of demands are exactly the same as in the case of vertical domi-

nance, although, the corresponding price domain is different, since q < 2 under horizontal

dominance. Accordingly, we have that:

D
A|HD
j

(
pA, pB

)
=
q − α(1− α + pB − pA)−

√
q (q − 2α(1− α + pB − pA) )

2α2
,

when 1− α− q + qα
2
≤ pA − pB < 1− α, and:

D
A|HD
j

(
pA, pB

)
=
−q + α(1 + α− pB + pA + q) +

√
q [q − 2α(1− α− pB + pA + q) ]

2α2
,
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when −q − (1− α) ≤ pA − pB < −(1− α)− qα
2
.

The situation described in figure 1(c) for the case of vertical dominance does not arise in

the case of horizontal dominance. Instead, when −(1−α)− qα
2
≤ pA−pB ≤ 1−α−q+ qα

2
,

the configuration of demand is depicted in figure 2(a). In that case, all consumers located

closer to platform A (resp. platform B) participate in this platform (regardless of their

willingness to pay for quality) 15. This is the case, when ỹj(0) > 1 and ỹj(1) < 0, yielding:

−(1− α)− qα
2
≤ pA − pB ≤ 1− α− q + qα

2
.

The expression of demand can be obtained as follows:

D
A|HD
j

(
pA, pB

)
=

x̃j(0)+x̃j(1)

2
⇔

D
A|HD
j

(
pA, pB

)
= 1

2

[
1 + pB−pA

1−α −
q

2(1−α)

]
.

Accordingly, the demand function D
A|HD
j

(
pA, pB

)
under horizontal dominance, corre-

sponds to a piecewise function with the following specification:

D
A|HD
j

(
pA, pB

)
=

0 if pA − pB > 1− α;

q−α(1−α+pB−pA)−
√
q[q−2α(1−α+pB−pA) ]

2α2
if 1− α− q + qα

2
≤ pA − pB < 1− α;

1
2

[
1 + pB−pA

1−α −
q

2(1−α)

]
if −(1− α)− qα

2
≤ pA − pB ≤ 1− α− q + qα

2
;

−q+α(1+α−pB+pA+q)+
√
q[q−2α(1−α−pB+pA+q) ]

2α2
if −q − (1− α) ≤ pA − pB < −(1− α)− qα

2
;

1 if pA − pB < −q − (1− α),

.

and DB|HD
j

(
pA, pB

)
= 1−DA|HD

j

(
pA, pB

)
.

�

7.2 Appendix B - Proofs of Propositions and Lemmas

Proof of Lemma 1
15Recall that in the case of horizontal dominance, consumers attach more importance to hor-

izontal differentiation vis-à-vis vertical differentiation.
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Let us consider the profit of platform A :

πA
(
pA, pB

)
= 2pADA(pA, pB),

withDA(pA, pB) = DA|V D (pA, pB) under vertical dominance, andDA(pA, pB) = DA|HD (pA, pB)
under horizontal dominance. Recall that the demand of platform i is a continuous and

non-increasing function of pi, both under horizontal and vertical dominance.

A. proof under Horizontal Dominance

In the case of horizontal dominance we obtain that the profit function of platform A is

given by:

πA|HD
(
pA, pB

)
=



0, pA − pB > 1− α; (branch 5)

pA
[
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]

]
α2

, 1− α− q + qα
2
< pA − pB ≤ 1− α; (branch 4)

pA
[
1 + pB−pA

1−α −
q

2(1−α)

]
,−(1− α)− qα

2
≤ pA − pB ≤ 1− α− q + qα

2
; (branch 3)

pA
[
−q+α(1+α−pB+pA+q)+

√
q[q−2α(1−α−pB+pA+q) ]

]
α2

, −q − (1− α) ≤ pA − pB < −(1− α)− qα
2

;

(branch 2)

2pA, pA − pB < −q − (1− α).(branch 1)

(i) Concave and linear segments of the profit function (branches 1-3 and 5)

Furthermore, in the case of horizontal dominance, DA|HD (pA, pB) is concave and decreas-
ing for pA − pB ≤ 1 − α − q + q

2
α and it is constant for pA − pB > 1 − α. Since demand

in those price domains is concave and non-increasing, the profit function of platform A is

also a concave function of pA in that price domain16. Note that for the concave segment

16Note that since πA
(
pA, pB

)
= 2pADA(pA, pB), follows that

∂πA(pA,pB)
∂pA

= 2DA(pA, pB) +

2pA
∂DA(pA,pB)

∂pA
. Thus,

∂2πA(pA,pB)
∂(pA)2

= 4
∂DA(pA,pB)

∂pA
+ 2pA

∂2DA(pA,pB)
∂(pA)2

. Since the demand is (i) de-
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−q − (1− α) ≤ pA − pB < −(1− α)− qα
2
of the demand of platform A yields:

∂DA|HD(pA,pB)
∂pA

=
1

2α
−
√
q [q − 2α(1− α + pA − pB + q) ]

2α (q − 2α(1− α + pA − pB + q) )
;

∂2DA|HD(pA,pB)
∂(pA)2

= − 1

2q
1
2 [q − 2α (pB − pA + 1− α) ]

3
2

< 0.

The profit function of platform A is linear at branch 1 and concave at branches 2 and 3.

The first derivative of the profit function relatively to its price at branches 2 and 3 are,

respectively, given by:

∂πA(pA,pB)
∂pA

= 1 + 1
α
− q

α2
+ 2pA

α
+ q

α
− pB

α
+

√
q[q−2α(1−α+pA−pB+q) ]

α2
− pA
√
q[q−2α(1−α+pA−pB+q) ]

α[q−2α(1−α+pA−pB+q) ] ;
∂πA(pA,pB)

∂pA
= 2(1−α)+2pB−4pA−q

2(1−α) .

Evaluating the derivatives at the kink pA = pB − (1 − α) − qα
2
, follows that the LHS

derivative (using the profit function expression of branch 2) and the RHS derivative (using

the profit function expression of branch 3) are given by:

∂πA(pA,pB)
∂pA

∣∣∣∣
pA=[pB−(1−α)− qα2 ]

−
= 3− q + q

2(1−α) −
pB

1−α + 1−α+qα
α2

;

∂πA(pA,pB)
∂pA

∣∣∣∣
pA=[pB−(1−α)− qα2 ]

+
= 3− q + q

2(1−α) −
pB

1−α .

In the frontier between the two concave segments of the profit function, the following

inequality must hold:

∂πA(pA,pB)
∂pA

∣∣∣∣
pA=[pB−(1−α)− qα2 ]

−
≥ ∂πA(pA,pB)

∂pA

∣∣∣∣
pA=[pB−(1−α)− qα2 ]

+
.

By words, the LHS derivative at the kink point pA = pB − (1−α)− qα
2
must not be lower

than the RHS derivative to obtain a concave profit function in the domain −q− (1−α) ≤
pA−pB ≤ 1−α−q+ qα

2
.We verify that this inequality is verified, since the LHS derivative

is higher than the RHS derivative at pA = pB − (1− α)− qα
2
because:

1− α + qα ≥ 0,

creasing and (ii) concave at the considered segment follows that (i)
∂DA(pA,pB)

∂pA
< 0 and (ii)

∂2DA(pA,pB)
∂(pA)2

, respectively. Then, we obtain
∂2πA(pA,pB)

∂(pA)2
< 0.
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holds under assumption 1.

(ii) Convex segment of the profit function (branch 4)

By contrast, the only domain in which the profit function is not concave is:

1− α− q + q
2
α < pA − pB ≤ 1− α,

where the demand function DA|HD (pA, pB) is strictly convex, with:
∂2DA|HD(pA,pB)

∂(pA)2
=

1

2q
1
2 [q − 2α (pB − pA + 1− α) ]

3
2

> 0

for such values of
(
pA, pB

)
.

In that price domain, yields that the profit function is given by:

πA
(
pA, pB

)
= 2pADA(pA, pB) = pA

[
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]
α2

]
,

The derivative relatively to price is given by:

∂πA(pA,pB)
∂pA

= −
(
αpB − q − 2αpA − α2 + α

)√
ρ− 2αqpB + 3αqpA + q2 − 2αq(1− α)

α2
√
ρ

(7)

with ρ = −2αq
(
pB − pA

)
+q2−2α(1−α)q. Alternatively, expression (7) can be re-written

as:

∂πA(pA,pB)
∂pA

= 1 + q
α2
− 1+pB−2pA

α
−
√
q[q−2α(1−α+pB−pA) ]

α2
− pA
√
q[q−2α(1−α+pB−pA) ]

α[q−2α(1−α+pB−pA) ] . (8)

The second derivative of πA relatively to pA in the mentioned price domain is given by:

∂2πA(pA,pB)
∂(pA)2

= 2
α

+
pA
√
q[q−2α(1−α+pB−pA) ]

α[q−2α(1−α+pB−pA) ]2 −
2
√
q[q−2α(1−α+pB−pA) ]

α[q−2α(1−α+pB−pA) ] ,

and the third derivative of the profit function with respect to their price is given by:

∂3πA(pA,pB)
∂(pA)3

=
3
√
q [q − 2α(1− α + pB − pA) ]

{
q − α

[
2(1− α) + 2pB − pA

] }
[q − 2α(1− α + pB − pA) ]3

.

Thus, it is straightforward that
∂3πA(pA,pB)

∂(pA)3
> 0 under assumption 1, so that

∂πA(pA,pB)
∂pA

is

strictly convex in pA for the price domain 1− α− q + q
2
α < pA − pB ≤ 1− α.
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Also considering the behavior of
∂πA(pA,pB)

∂pA
in the neighborhood of pA = pB + (1 − α),

which corresponds to the upper bound of the convex segment of the demand, plugging

pA = pB + (1− α) in equation (7), we obtain:

∂πA(pA,pB)
∂pA

∣∣∣∣
pA=[pB+(1−α)]−

= −

[
q + α(1− α + pB)

] (√
q2 − q

)
qα2

= 0.

Since the LHS derivative of πA relatively to pA is null at pA =
[
pB + (1− α)

]−
and the

second derivative of the profit function evaluated at pA =
[
pB + (1− α)

]−
is given by:

∂2πA(pA,pB)
∂(pA)2

∣∣∣∣
pA=[pB+(1−α)]−

=
pB + 1− α

q
> 0,

it follows that the profit function πA
(
pA, pB

)
reaches to a minimum at the point pA =

pB+(1−α) and, thus,
∂πA(pA,pB)

∂pA
= 0 has at most one solution in the domain 1−α−q+ qα

2
<

pA − pB ≤ 1− α.

(iii) Sign of the derivatives at the kink between the linear and convex seg-

ment of the demand function

Furthermore, in the neighborhood of pA = pB + 1 − α − q + q
2
α, the lower bound of the

convex segment of the demand function, the RHS and the LHS derivatives at the kink

point pA = pB + 1− α− q + q
2
α of the profit function of platform A are equal.

(a) To compute the RHS derivative, we plug pA = pB + 1−α− q+ q
2
α in equation (7)

to obtain:

∂πA(pA,pB)
∂(pA)

∣∣∣∣
pA=

[
pB+1−α−q+ q

2
α
]+ = −1− pB

1− α +
q

2

(
3− 2α

1− α

)
.

(b) To compute the LHS derivative note that, for
[
pA = pB + 1− α− q + q

2
α
]−
, the

profit of platform A is equal to:

πA
(
pA, pB

)
= pA

[
1 +

pB − pA
1− α − q

2(1− α)

]
.

Then, the derivative is given by:

∂πA(pA,pB)
∂pA

=
2(1− α) + 2pB − 4pA − q

2(1− α)
.
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Evaluating the derivative at pA = pB + 1− α − q + q
2
α, we obtain the LHS derivative in

the neighborhood of pA =
[
pB + 1− α− q + q

2
α
]−

:

∂πA(pA,pB)
∂pA epA=

[
pB+1−α−q+ q

2
α
]− = −1− pB

1− α +
q

2

(
3− 2α

1− α

)
.

Thus, the sign of
∂πA(pA,pB)

∂pA
is the same on both sides of pA = pB + 1 − α − q + q

2
α and

both derivatives are equal:

∂πA(pA,pB)
∂(pA) epA=

[
pB+1−α−q+ q

2
α
]+ =

∂πA(pA,pB)
∂(pA) epA=

[
pB+1−α−q+ q

2
α
]−

(iv) Conclusion

Thus, combining this result with the fact that πA is concave on −q− (1−α) < pA−pB ≤
1−α− q+ q

2
α, we conclude that on the interval −q− (1−α) ≤ pA−pB ≤ 1−α the profit

function of platform A under horizontal dominance has a unique maximum with respect

to pA and, therefore, is quasi-concave in pA. We provide robustness with a simulation

where we observe, for various combinations of the pair (α, q), a profit function with a

quasi-concave shape.

B. proof under Vertical Dominance

In the case of vertical dominance we obtain that the profit function of platform A is given

by:

πA|V D
(
pA, pB

)
=

0, pA − pB > 1− α; (branch 5)

pA
[
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]

]
α2

, − (1 + α) + 2α
q
< pA − pB ≤ 1− α; (branch 4)

2pA

q−2α
(
pB − pA − α

)
, 1 + α− q − 2α

q
≤ pA − pB ≤ −(1 + α) + 2α

q
; (branch 3)

pA
[
−q+α(1+α−pB+pA+q)+

√
q[q−2α(1−α−pB+pA+q) ]

]
α2

, −q − (1− α) ≤ pA − pB < 1 + α− q − 2α
q

;

(branch 2)

2pA, pA − pB < −q − (1− α). (branch 1)
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(i) Concave and linear segments of the profit function (branches 1-3 and 5)

As explained in the case of horizontal dominance but, now, under vertical dominance,

DA|V D (pA, pB) is concave and decreasing for pA − pB ≤ −(1 + α) + 2α
q
and it is constant

for pA− pB > 1−α. Since demand in those price domains is concave and non-increasing,
the profit function of platform A is also a concave function of pA in that price domain17.

Note that for the concave segment −q− (1−α) ≤ pA−pB < 1+α− q− 2α
q
of the demand

of platform A yields:

∂DA|VD(pA,pB)
∂pA

=
1

2α
−
√
q [q − 2α(1− α + pA − pB + q) ]

2α [q − 2α(1− α + pA − pB + q) ]
;

∂2DA|VD(pA,pB)
∂(pA)2

= − 1

2q
1
2 [q − 2α (pB − pA + 1− α) ]

3
2

< 0.

The profit function of platform A is linear at branch 1 and concave at branches 2 and 3.

The first derivative of the profit function relatively to its price at branches 2 and 3 are,

respectively, given by:

∂πA(pA,pB)
∂pA

= 1 + 1
α
− q

α2
+ 2pA

α
+ q

α
− pB

α
+

√
q[q−2α(1−α+pA−pB+q) ]

α2
− pA
√
q[q−2α(1−α+pA−pB+q) ]

α[q−2α(1−α+pA−pB+q) ] ;
∂πA(pA,pB)

∂pA
= −2(2pA−pB+α)

q−2α .

Evaluating the derivatives at pA = pB + 1 + α − q − 2α
q
, follows that the LHS derivative

(using the profit function expression of branch 2) and the RHS derivative (using the profit

function expression of branch 3) are given by:

∂πA(pA,pB)
∂pA

∣∣∣∣
pA=[pB+1+α−q− 2α

q ]
−

= 3− 4

q
+

q

q − 2α
− 2pB

q − 2α
;

∂πA(pA,pB)
∂pA

∣∣∣∣
pA=[pB+1+α−q− 2α

q ]
+

= 3− 4

q
+

q

q − 2α
− 2pB

q − 2α
.

Then, under vertical dominance, the LHS derivative and the RHS derivative at pA =

pB + 1 + α − q − 2α
q
are equal. Thus, the profit function is concave in the domain

−q − (1− α) ≤ pA − pB ≤ −(1 + α) + 2α
q
.

17Note that since πA
(
pA, pB

)
= 2pADA(pA, pB), follows that

∂πA(pA,pB)
∂pA

= 2DA(pA, pB) +

2pA
∂DA(pA,pB)

∂pA
. Thus,

∂2πA(pA,pB)
∂(pA)2

= 4
∂DA(pA,pB)

∂pA
+ 2pA

∂2DA(pA,pB)
∂(pA)2

. Since the demand is (i) de-

creasing and (ii) concave at the considered segment follows that (i)
∂DA(pA,pB)

∂pA
< 0 and (ii)

∂2DA(pA,pB)
∂(pA)2

, respectively. Then, we obtain
∂2πA(pA,pB)

∂(pA)2
< 0.
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(ii) Convex segment of the profit function (branch 4)

By contrast, the only domain in which the profit function is not concave is:

−(1 + α) + 2α
q
< pA − pB ≤ 1− α,

where the demand function DA|V D (pA, pB) is strictly convex, with:
∂2DA|HD(pA,pB)

∂(pA)2
=

1

2q
1
2 [q − 2α (pB − pA + 1− α) ]

3
2

> 0

for such values of
(
pA, pB

)
.

In that price domain, yields that the profit function is given by:

πA
(
pA, pB

)
= 2pADA(pA, pB) = pA

{
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]
α2

}
,

The derivative relatively to price is given by expression (7). The second derivative of πA

relatively to pA in the mentioned price domain is given by:

∂2πA(pA,pB)
∂(pA)2

= 2
α

+
pA
√
q[q−2α(1−α+pB−pA) ]

α[q−2α(1−α+pB−pA) ]2 −
2
√
q[q−2α(1−α+pB−pA) ]

α[q−2α(1−α+pB−pA) ] ,

and the third derivative of the profit function with respect to their price is given by:

∂3πA(pA,pB)
∂(pA)3

=
3
√
q[q−2α(1−α+pB−pA) ]{q−α[2(1−α)+2pB−pA] }

[q−2α(1−α+pB−pA) ]3 .

Thus, it is straightforward that
∂3πA(pA,pB)

∂(pA)3
> 0 under assumption 1, so that

∂πA(pA,pB)
∂pA

is

strictly convex in pA for the price domain −(1− α) + 2α
q
< pA − pB ≤ 1− α.

Also considering the behavior of
∂πA(pA,pB)

∂pA
in the neighborhood of pA = pB + (1 − α),

which corresponds to the upper bound of the convex segment of the demand, plugging

pA = pB + (1− α) in equation (7), we obtain:

∂πA(pA,pB)
∂pA

∣∣∣∣
pA=[pB+(1−α)]−

= −

[
q + α(1− α + pB)

] (√
q2 − q

)
qα2

= 0.

Since the LHS derivative of πA relatively to pA is null at pA =
[
pB + (1− α)

]−
and the

second derivative of the profit function evaluated at pA =
[
pB + (1− α)

]−
is given by:

∂2πA(pA,pB)
∂(pA)2

∣∣∣∣
pA=[pB+(1−α)]−

=
pB + 1− α

q
> 0,
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it follows that the profit function πA
(
pA, pB

)
reaches to a minimum at the point pA =

pB + (1−α) and, thus,
∂πA(pA,pB)

∂pA
= 0 has at most one solution in the domain −(1 +α) +

2α
q
< pA − pB ≤ 1− α.

(iii) Sign of the derivatives at the kink between the linear and convex seg-

ment of the demand function

Furthermore, in the neighborhood of pA = pB − (1 + α) + 2α
q
(the lower bound of the

convex segment of the demand function), the RHS and the LHS derivatives are equal at

this kink point of the profit function of platform A.

(a) To compute the RHS derivative, we plug pA = pB − (1 + α) + 2α
q
in equation (7)

to obtain:

∂πA(pA,pB)
∂(pA)

∣∣∣∣
pA=[pB−(1−α)+ 2α

q ]
+

= 4
q−2α −

2pB

q−2α + 2α
q−2α −

8α
q(q−2α) .

(b) To compute the LHS derivative note that, for
[
pB − (1 + α) + 2α

q

]−
, the profit of

platform A is equal to:

πA
(
pA, pB

)
=

2pA

q − 2α

(
pB − pA − α

)
.

Then, the derivative is given by:

∂πA(pA,pB)
∂pA

=
2pB

q − 2α
− 4pA

q − 2α
− 2α

q − 2α
.

Evaluating the derivative at pA = pB − (1 + α) + 2α
q
, we obtain that the LHS derivative

in the neighborhood of pA =
[
pB − (1 + α) + 2α

q

]−
is given by:

∂πA(pA,pB)
∂(pA)

∣∣∣∣
pA=[pB−(1−α)+ 2α

q ]
−

= 4
q−2α −

2pB

q−2α + 2α
q−2α −

8α
q(q−2α) .

Then, both derivatives have the same sign and are equal.

∂πA(pA,pB)
∂(pA)

∣∣∣∣
pA=[pB−(1−α)+ 2α

q ]
−

=
∂πA(pA,pB)

∂(pA)

∣∣∣∣
pA=[pB−(1−α)+ 2α

q ]
+
,

such that the profit function is continuous and decreasing.
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(iv) Conclusion

Thus, combining this result with the fact that πA is concave on −q− (1−α) ≤ pA−pB ≤
−(1 +α) + 2α

q
, we conclude that on the interval −q− (1−α) ≤ pA− pB ≤ 1−α the profit

function of platform A under vertical dominance is quasi-concave and it has a unique

maximum with respect to pA.We provide robustness with a simulation where we observe,

for various combinations of pairs (α, q), a profit function with a quasi-concave shape.

The proof can be repeated, mutatis mutandis, under vertical and horizontal dominance

for platform B. Let us now consider the profit of platform B :

πB
(
pA, pB

)
= 2pBDB(pA, pB),

withDB(pA, pB) = DB|V D (pA, pB) under vertical dominance, andDB(pA, pB) = DB|HD (pA, pB)
under horizontal dominance. Recall that the demand of platform i is a continuous and

non-increasing function of pi, both under horizontal and vertical dominance.

C. proof under Horizontal Dominance

In the case of horizontal dominance we obtain that the profit function of platform B is

given by:

πB|HD
(
pA, pB

)
=
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

2pB, pA − pB > 1− α; (branch 5)

2pB
(

1−
[
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]

]
2α2

)
, 1− α− q + qα

2
< pA − pB ≤ 1− α;

(branch 4)

2pB
{

1− 1
2

[
1 + pB−pA

1−α −
q

2(1−α)

]}
, −(1− α)− qα

2
≤ pA − pB ≤ 1− α− q + qα

2
;

(branch 3)

2pB
{

1−
[
−q+α(1+α−pB+pA+q)+

√
q[q−2α(1−α−pB+pA+q) ]

]
2α2

}
,
−q − (1− α) ≤ pA − pB <

< −(1− α)− qα
2

; (branch 2)

0, pA − pB < −q − (1− α). (branch 1)

(i) Concave and linear segments of the profit function (branches 3-5 and 1)

Furthermore, in the case of horizontal dominance, DB|HD (pA, pB) is concave and decreas-
ing for −(1 − α) − qα

2
≤ pA − pB ≤ 1 − α and it is constant for pA − pB > 1 − α and

pA−pB < −q−(1−α). Since demand in those price domains is concave and non-increasing,

the profit function of platform B is also a concave function of pB in that price domain18.

Note that for the concave segment 1 − α − q + qα
2
< pA − pB ≤ 1 − α of the demand of

platform B yields:

∂DB|HD(pA,pB)
∂pB

= −
−α+ qα√

q[q−2α(1−α+pB−pA) ]

2α2
;

∂2DB|HD(pA,pB)
∂(pB)2

= − 1

2q
1
2 [q−2α(pB−pA+1−α) ]

3
2
< 0.

The profit function of platform B is linear at branch 5 and concave at branches 3 and 4.

The first derivative of the profit function relatively to its price at branches 4 and 3 are,

18Note that since πB
(
pA, pB

)
= 2pBDB(pA, pB), follows that

∂πB(pA,pB)
∂pB

= 2DB(pA, pB) +

2pB
∂DB(pA,pB)

∂pB
. Thus,

∂2πB(pA,pB)
∂(pB)2

= 4
∂DB(pA,pB)

∂pB
+ 2pB

∂2DB(pA,pB)
∂(pB)2

. Since the demand is (i) de-

creasing and (ii) concave at the considered segment follows that (i)
∂DB(pA,pB)

∂pB
< 0 and (ii)

∂2DB(pA,pB)
∂(pB)2

, respectively. Then, we obtain
∂2πB(pA,pB)

∂(pB)2
< 0.
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respectively, given by:

∂πB(pA,pB)
∂pB

= 1− q
α2

+ 1
α
− pA

α
+ 2pB

α
+

√
q[q−2α(1−α+pB−pA) ]

α2
− pB
√
q[q−2α(1−α+pB−pA) ]

α[q−2α(1−α+pB−pA) ] ;
∂πB(pA,pB)

∂pB
= 2(1−α)+q+2pA−4pB

2(1−α) .

Evaluating the derivatives at the kink pB = pA − (1− α) + q − qα
2
, follows that the LHS

derivative (using the profit function expression of branch 4) and the RHS derivative (using

the profit function expression of branch 3) are given by:

∂πB(pA,pB)
∂pB

∣∣∣∣
pB=[pA−(1−α)+q− qα2 ]

−
= 3− q − q + 2pA

2(1− α)
;

∂πA(pA,pB)
∂pA

∣∣∣∣
pB=[pA−(1−α)+q− qα2 ]

+
= 3− q − q + 2pA

2(1− α)
.

In the frontier between the two concave segments of the profit function, the following

inequality must hold:

∂πB(pA,pB)
∂pA

∣∣∣∣
pB=[pA−(1−α)+q− qα2 ]

−
≥ ∂πA(pA,pB)

∂pA

∣∣∣∣
pB=[pA−(1−α)+q− qα2 ]

+
.

We verify that this inequality is verified, since the LHS derivative is equal to the RHS

derivative at pB = pA − (1− α) + q − qα
2
.

(ii) Convex segment of the profit function (branch 2)

By contrast, the only domain in which the profit function is not concave is:

−q − (1− α) ≤ pA − pB < −(1− α)− qα
2
,

where the demand function DB|HD (pA, pB) is strictly convex, with:
∂2DB|HD(pA,pB)

∂(pB)2
=

1

2q
1
2 [q − 2α (pB − pA + 1− α) ]

3
2

> 0

for such values of
(
pA, pB

)
.

In that price domain, yields that the profit function is given by:

πB
(
pA, pB

)
= 2pBDB(pA, pB) = 2pB

{
1−

[
−q+α(1+α−pB+pA+q)+

√
q[q−2α(1−α−pB+pA+q) ]

]
2α2

}
,
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The derivative relatively to price is given by:

∂πB(pA,pB)
∂pB

=
q−qα−

√
q[q−2α(1−α−pB+pA+q) ]−α

(
1−α−2pB+pA+ qpB√

q[q−2α(1−α−pB+pA+q) ]

)
α2

(9)

Alternatively, expression (9) can be re-written as:

∂πB(pA,pB)
∂pB

= 1+ q
α2
− 1

α
− pA

α
− q

α
+ 2pB

α
− pB
√
q[q−2α(1−α−pB+pA+q) ]

α[q−2α(1−α−pB+pA+q) ] −
√
q[q−2α(1−α−pB+pA+q) ]

α2
.

(10)

The second derivative of πB relatively to pB in the mentioned price domain is given by:

∂2πB(pA,pB)
∂(pB)2

=
2+ q2pBα

(q−2α(1−α−pB+pA+q) )
3
2

− 2q√
q(q−2α(1−α−pB+pA+q) )

α2
,

and the third derivative of the profit function with respect to their price is given by:

∂3πB(pA,pB)
∂(pB)3

=
3q3
[
q − 2α

(
1− α− pB

2
+ pA + q

)]
[q (q − 2α(1− α− pB + pA + q) )]

5
2

.

Thus, it is straightforward that
∂3πB(pA,pB)

∂(pB)3
> 0 under assumption 1, so that

∂πB(pA,pB)
∂pB

is

strictly convex in pB for the price domain −q − (1− α) ≤ pA − pB < −(1− α)− qα
2
.

Also considering the behavior of
∂πB(pA,pB)

∂pB
in the neighborhood of pB = pA+(1−α)+q,

which corresponds to the upper bound of the convex segment of the demand, plugging

pB = pA + (1− α) + q in equation (9), we obtain:

∂πB(pA,pB)
∂pB

∣∣∣∣
pB=[pA+(1−α)+q]−

= −
(
−q+
√
q2
)
[q+(1+pA+q)α−α2]
qα2

= 0.

Since the LHS derivative of πB relatively to pB is null at pB =
[
pA + (1− α) + q

]−
and

the second derivative of the profit function evaluated at pB =
[
pA + (1− α) + q

]−
is given

by:
∂2πB(pA,pB)

∂(pB)2

∣∣∣∣
pB=[pA+(1−α)+q]−

=
1− α + pA + q

q
> 0,

it follows that the profit function πB
(
pA, pB

)
reaches to a minimum at the point pB =

pA + (1 − α) + q and, thus,
∂πB(pA,pB)

∂pB
= 0 has at most one solution in the domain

−q − (1− α) ≤ pA − pB < −(1− α)− qα
2
.
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(iii) Sign of the derivatives at the kink between the linear and convex seg-

ment of the demand function

Furthermore, in the neighborhood of pB = pA+1−α+ q
2
α, the lower bound of the convex

segment of the demand function, the RHS and the LHS derivatives at the kink point

pB = pA + 1− α + q
2
α of the profit function of platform B are equal.

(a) To compute the RHS derivative, we plug pB = pA + 1− α+ q
2
α in equation (9) to

obtain:
∂πB(pA,pB)

∂(pB)

∣∣∣∣
pB=

[
pA+1−α+ q

2
α
]+ = −1 + q − 2pA + q

2(1− α)
.

(b) To compute the LHS derivative note that, for pB =
[
pA + 1− α + q

2
α
]−
, the profit

of platform B is equal to:

πB
(
pA, pB

)
= 2pB

{
1− 1

2

[
1 +

pB − pA
1− α − q

2(1− α)

]}
.

Then, the derivative is given by:

∂πB(pA,pB)
∂pB

=
2− 2α + q − 4pB + 2pA

2(1− α)
.

Evaluating the derivative at pB = pA + 1− α + q
2
α, we obtain the LHS derivative in the

neighborhood of pB =
[
pA + 1− α + q

2
α
]−

:

∂πB(pA,pB)
∂pB epB=

[
pA+1−α+ q

2
α
]− = −1 + q − 2pA + q

2(1− α)
.

Thus, the sign of
∂πA(pA,pB)

∂pA
is the same on both sides of pB = pA + 1− α+ q

2
α and both

derivatives are equal:

∂πA(pA,pB)
∂(pA) epA=

[
pB+1−α+ q

2
α
]+ =

∂πA(pA,pB)
∂(pA) epA=

[
pB+1−α+ q

2
α
]−

(iv) Conclusion

Thus, combining this result with the fact that πB is concave on 1−α−q+ qα
2
≤ pA−pB ≤

1− α, we conclude that the profit function of platform B under horizontal dominance is

quasi-concave in pB and, therefore, has a unique maximum with respect to pB.
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D. proof under Vertical Dominance

In the case of vertical dominance we obtain that the profit function of platform B is given

by:

πB|V D
(
pA, pB

)
=

2pB, pA − pB > 1− α; (branch 5)

2pB
{

1−
[
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]

]
2α2

}
, −(1 + α) + 2α

q
< pA − pB ≤ 1− α;

(branch 4)

2pB
[
1− 1

q−2α
(
pB − pA − α

)]
, 1 + α− q − 2α

q
≤ pA − pB ≤ −(1 + α) + 2α

q
; (branch 3)

2pB
{

1−
[
−q+α(1+α−pB+pA+q)+

√
q[q−2α(1−α−pB+pA+q) ]

]
2α2

}
,

−q − (1− α) ≤ pA − pB <
< 1 + α− q − 2α

q
; (branch 2)

0, pA − pB < −q − (1− α). (branch 1)

(i) Concave and linear segments of the profit function (branches 3-5 and 1)

As explained in the case of horizontal dominance but, now, under vertical dominance,

DB|V D (pA, pB) is concave and decreasing for 1 + α − q − 2α
q
≤ pA − pB ≤ 1 − α and it

is constant for pA − pB < −q − (1− α). Since demand in those price domains is concave

and non-increasing, the profit function of platform B is also a concave function of pB in

that price domain. Note that for the concave segment −(1 + α) + 2α
q
< pA − pB ≤ 1− α

of the demand of platform B yields:

∂DB|VD(pA,pB)
∂pB

= −
−α+ qα√

q[q−2α(1−α+pB−pA) ]

2α2
;

∂2DB|VD(pA,pB)
∂(pB)2

= − 1

2q
1
2 [q−2α(pB−pA+1−α) ]

3
2
< 0.

The profit function of platform B is linear at branch 5 and concave at branches 3 and 4.

The first derivative of the profit function relatively to its price at branches 4 and 3 are,
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respectively, given by:

∂πB(pA,pB)
∂pB

= 1− q
α2

+ 1
α
− pA

α
+ 2pB

α
+

√
q[q−2α(1−α+pB−pA) ]

α2
− pB
√
q[q−2α(1−α+pB−pA) ]

α[q−2α(1−α+pB−pA) ] ; ;
∂πB(pA,pB)

∂pB
=

2(q−α+pA−2pB )
q−2α .

Evaluating the derivatives at pB = pA + 1 + α − 2α
q
, follows that the LHS derivative

(using the profit function expression of branch 4) and the RHS derivative (using the

profit function expression of branch 3) are given by:

∂πA(pA,pB)
∂pA

∣∣∣∣
pB=[pA+1+α− 2α

q ]
−

= 3− 4

q
− 2pA + q

q − 2α
;

∂πA(pA,pB)
∂pA

∣∣∣∣
pB=[pA+1+α− 2α

q ]
+

= 3− 4

q
− 2pA + q

q − 2α
.

Then, under vertical dominance, the LHS derivative and the RHS derivative at pB =

pA + 1 + α − 2α
q
are equal. Thus, the profit function is strictly concave in the domain

1 + α− q − 2α
q
≤ pA − pB ≤ 1− α.

(ii) Convex segment of the profit function (branch 2)

By contrast, the only domain in which the profit function is not concave is:

−q − (1− α) ≤ pA − pB < 1 + α− q − 2α
q
,

where the demand function DB|V D (pA, pB) is strictly convex, with:
∂2DB|VD(pA,pB)

∂(pB)2
=

1

2q
1
2 [q − 2α (pB − pA + 1− α) ]

3
2

> 0

for such values of
(
pA, pB

)
.

In that price domain, yields that the profit function is given by:

πB
(
pA, pB

)
= 2pBDB(pA, pB) = 2pB

{
1−

[
−q+α(1+α−pB+pA+q)+

√
q[q−2α(1−α−pB+pA+q) ]

]
2α2

}
,

The derivative relatively to price is given by expression (9). The second derivative of πB

relatively to pB in the mentioned price domain is given by:

∂2πB(pA,pB)
∂(pB)2

=
2+ q2pBα

[q−2α(1−α−pB+pA+q) ]
3
2

− 2q√
q[q−2α(1−α−pB+pA+q) ]

α2
,
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and the third derivative of the profit function with respect to their price is given by:

∂3πB(pA,pB)
∂(pB)3

=
3q3
[
q − 2α

(
1− α− pB

2
+ pA + q

)]
{q [q − 2α(1− α− pB + pA + q) ]}

5
2

.

Thus, it is straightforward that
∂3πB(pA,pB)

∂(pB)3
> 0 under assumption 1, so that

∂πB(pA,pB)
∂pB

is

strictly convex in pB for the price domain −q − (1− α) ≤ pA − pB < 1 + α− q − 2α
q
.

Also considering the behavior of
∂πB(pA,pB)

∂pB
in the neighborhood of pB = pA + (1−α) + q,

which corresponds to the upper bound of the convex segment of the demand, plugging

pB = pA + (1− α) + q in equation (9), we obtain:

∂πB(pA,pB)
∂pB

∣∣∣∣
pB=[pA+(1−α)+q]−

= −
(
−q+
√
q2
)
[q+(1+pA+q)α−α2]
qα2

= 0.

Since the LHS derivative of πB relatively to pB is null at pB =
[
pA + (1− α) + q

]−
and

the second derivative of the profit function evaluated at pB =
[
pA + (1− α) + q

]−
is given

by:
∂2πB(pA,pB)

∂(pB)2

∣∣∣∣
pB=[pA+(1−α)+q]−

=
1− α + pA + q

q
> 0,

it follows that the profit function πB
(
pA, pB

)
reaches to a minimum at the point pB =

pA + (1 − α) + q and, thus,
∂πB(pA,pB)

∂pB
= 0 has at most one solution in the domain

−q − (1− α) ≤ pA − pB < 1 + α− q − 2α
q
.

(iii) Sign of the derivatives at the kink between the linear and convex seg-

ment of the demand function

Furthermore, in the neighborhood of pB = pA − (1 + α) + q + 2α
q
(the lower bound of the

convex segment of the demand function), the RHS and the LHS derivatives are equal at

this kink point of the profit function of platform B.

(a) To compute the RHS derivative, we plug pB = pA − (1 + α) + q + 2α
q
in equation

(9) to obtain:
∂πB(pA,pB)

∂(pB)

∣∣∣∣
pB=[pA−(1+α)+q+ 2α

q ]
+

= −1 +
4

q
− 2pA + q

q − 2α
.

45



(b) To compute the LHS derivative note that, for pB =
[
pA − (1 + α) + q + 2α

q

]−
, the

profit of platform B is equal to:

πB
(
pA, pB

)
= 2pB

[
1− 1

q − 2α

(
pB − pA − α

)]
.

Then, the derivative is given by:

∂πB(pA,pB)
∂pB

=
2(pA + q − 2pB − α)

q − 2α
.

Evaluating the derivative at pB = pA− (1+α)+q+ 2α
q
, we obtain that the LHS derivative

in the neighborhood of pB =
[
pA − (1 + α) + q + 2α

q

]−
is given by:

∂πB(pA,pB)
∂pB

∣∣∣∣
pB=[pA−(1+α)+q+ 2α

q ]
−

= −1 +
4

q
− 2pA + q

q − 2α
.

Then, both derivatives have the same sign and are equal:

∂πB(pA,pB)
∂pB

∣∣∣∣
pB=[pA−(1+α)+q+ 2α

q ]
−

=
∂πB(pA,pB)

∂pB

∣∣∣∣
pB=[pA−(1+α)+q+ 2α

q ]
+
.

(iv) Conclusion

Thus, combining this result with the fact that πB is concave on 1+α−q− 2α
q
≤ pA−pB ≤

1 − α, we conclude that the profit function of platform B under vertical dominance is

quasi-concave and it has a unique maximum with respect to pB. �

Proof of Proposition 2

Consider now the case of horizontal dominance, arising when q < 2. When:

−(1− α)− qα

2
≤ pA − pB ≤ 1− α− q +

qα

2
,

the profit of platform A is equal to:

2pA
{

1

2

[
1 +

pB − pA
1− α − q

2(1− α)

]}
while the profit of platform B is given by:

2pB
{

1− 1

2

[
1 +

pB − pA
1− α − q

2(1− α)

]}
.
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Solving the corresponding system of first order conditions, we obtain the equilibrium price

candidate:

pA
∗

= 1− α− q
6
; pB

∗
= 1− α + q

6
,

and equilibrium market shares:

DA∗ = 1
2

[
1− q

6(1−α)

]
, DB∗ = 1

2

[
1 + q

6(1−α)

]
.

The equilibrium candidate requires:

DA∗ ≥ 0⇔ q < 6(1− α),

which holds under horizontal dominance accordingly to assumption 1.

It only remains to verify if the equilibrium price candidate verifies the price domain

condition:

−(1− α)− qα
2
≤ pA − pB ≤ 1− α− q + qα

2
,

which holds for the intersection of the below system of inequalities. Computing, we obtain:{
−(1− α)− qα

2
≤ pA∗ − pB∗;

pA∗ − pB∗ ≤ 1− α− q + qα
2
.
⇔
{
−(1− α)− qα

2
≤ − q

3
;

− q
3
≤ 1− α− q + qα

2
.
⇔

⇔ q ≤ 6(1−α)
2−3α ∩ q ≤

6(1−α)
4−3α .⇔ q < 6(1−α)

4−3α ,

as described by the yellow region exposed in figure 6.

Figure 6

yielding Proposition 2 that is, now, fully characterized. �
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Proof of Proposition 3

As the profit function is quasi-concave, for each type of dominance, the equilibrium prices

can be obtained from the first order conditions:

∂πi(pA,pB)
∂pi

= 0, i ∈ {A,B} .

Recall that, we concentrate on interior solutions in which both platforms are active. Thus,

we exclude the pairs of prices
(
pA, pB

)
such that:

pA − pB > 1− α ∨ pA − pB < −q − (1− α).

Let us consider first, the case of vertical dominance, occurring when q > 2.

Focusing only on the linear segment of the profit function, when:

1 + α− q − 2α

q
≤ pA − pB ≤ −(1− α) +

2α

q
,

the profit of platform A is equal to:

2pA
[

1

q − 2α

(
pB − pA − α

)]
while the profit of platform B is given by:

2pB
[
1− 1

q − 2α

(
pB − pA − α

)]
.

Solving the corresponding system of first order conditions, we obtain the equilibrium

prices:

pA
∗

= q−α
3

; pB
∗

= 2(q−α)
3

,

and the equilibrium market shares:

DA∗ = 1
3
− 2α

3(q−2α) , D
B∗ = 2

3
+ 2α

3(q−2α) .

The equilibrium candidate requires:

DA∗ ≥ 0⇔ q > 4α,

which holds under vertical dominance accordingly to assumption 1.
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Given the quasi-concavity of the profit function, we obtain that this equilibrium price

candidate is always an equilibrium, as long as:

1 + α− q − 2α
q
≤ pA − pB ≤ −(1− α) + 2α

q
.

This leads to the following result:{
1 + α− q − 2α

q
≤ pA∗ − pB∗;

pA∗ − pB∗ ≤ −(1− α) + 2α
q
.
⇔
{

1 + α− q − 2α
q
≤ − q−α

3
;

− q−α
3
≤ −(1− α) + 2α

q
.

⇔
{

1 + 2
3
α− 2

3
q − 2α

q
≤ 0;

1− 2
3
α− 1

3
q − 2α

q
≤ 0.

⇔
{
−2q2 + q(3 + 2α)− 6α ≤ 0;

−q2 + q(3− 2α)− 6α ≤ 0.

Taking into consideration the definition of vertical dominance (q > 2), the equilibrium

price candidate is always an equilibrium for:

q > 2 ∩ −2q2 + q(3 + 2α)− 6α ≤ 0 ∩ −q2 + q(3− 2α)− 6α ≤ 0,

which is described by the blue region in the figure 7.

Figure 7

The roots of both polynomials are given by:{
−2q2 + q(3 + 2α)− 6α = 0

−q2 + q(3− 2α)− 6α = 0
⇔

 qcr1∗ = 1
4

(
3 + 2α±

√
9− 4α(9− α)

)
;

qcr2∗ = 1
2

(
3− 2α±

√
9− 4α(9− α)

)
.

Then, the equilibrium price candidate is an equilibrium for:

q > 2 ∩ q > q,
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with q = 1
2

(
3− 2α +

√
9− 4α(9− α)

)
. �

Proof of Lemma 5

Under the region of horizontal dominance q < 6(1−α)
4−3α , the derivatives with respect to the

degree of vertical differentiation are given by:

∂pA
∗

∂q
= −1

6
< 0 and ∂pB

∗

∂q
= 1

6
> 0;

∂DA
∗

∂q
= − 1

12(1−α) < 0 and ∂DB
∗

∂q
= 1

12(1−α) > 0;

∂πA
∗

∂q
= q−6(1−α)

18
< 0 for q < 3

2
(1− α) and ∂πB

∗

∂q
= q+6(1−α)

18
> 0.

Since for q ∈ (0, 2) yields that 6(1−α)
4−3α > 3

2
(1− α) , (cf. figure 8 where the green region

corresponds to q < 3
2

(1− α) and the yellow region corresponds to 3
2

(1− α) < q < 6(1−α)
4−3α ),

it follows that:

(i) for q ∈
(
0, 3

2
(1− α)

)
: ∂πA

∗

∂q
< 0; ∂π

B∗

∂q
> 0;

(ii) for q ∈
(
3
2

(1− α) , 6(1−α)
4−3α

)
: ∂πA

∗

∂q
> 0; ; ∂π

B∗

∂q
> 0.

Figure 8

Under vertical dominance, q > 2 ∩ q > 1
2

(
3− 2α +

√
9− 4α(9− α)

)
, yields:

∂pA
∗

∂q
= 1

3
> 0 and ∂pB

∗

∂q
= 2

3
> 0;

∂DA
∗

∂q
= 2α

3(q−2α)2 > 0 and ∂DB
∗

∂q
= − 2α

3(q−2α)2 < 0;
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The derivative of the profit of the low-quality platform with respect to q is given by:

∂πA
∗

∂q
= 2(q−4α)

9(q−2α) + 4α(q−α)
9(q−2α)2 = 2q2−8qα+12α2

9q2−36qα+36α2 > 0.

Since both equilibrium prices and equilibrium market shares are increasing in q, the result

is trivial.

On the high-quality platform B it follows that:

∂πB
∗

∂q
= 8q

9(q−2α) −
8α(q−α)
9(q−2α)2 = 8q2−32qα+24α2

9(q−2α)2 Q 0.

The roots of the polynomial 8q2− 32qα+ 24α2 are given by qCR1 = α and qCR2 = 3α. By

assumption 1: 0 ≤ α < 1
2
. Then, it follows that: qCR1 < 2 ∩ qCR2 < 2,∀α. Since under

vertical dominance, q > 2, it is immediate that ∂πB
∗

∂q
> 0. �

Proof of Lemma 6

Under the region of horizontal dominance q < 6(1−α)
4−3α , the derivatives of the outcomes with

respect to the intensity of the network effect are given by:

∂pA
∗

∂α
= −1 < 0 and ∂pB

∗

∂α
= −1 < 0;

∂DA
∗

∂α
= − q

12(1−α)2 < 0 and ∂DB
∗

∂α
= q

12(1−α)2 > 0;

∂πA
∗

∂α
= −1 + q2

36(1−α)2 and
∂πB

∗

∂α
= −1 + q2

36(1−α)2 .

The roots of the polynomial q2 − 36(1 − α)2 are given by qCR = ±6(1 − α). Then, both

derivatives are negative for 0 < q < 6(1−α)
4−3α .

Under the region of vertical dominance q > 2∩q > 1
2

(
3− 2α +

√
9− 4α(9− α)

)
, follows:

∂pA
∗

∂α
= −1

3
< 0 and ∂pB

∗

∂α
= −2

3
< 0;

∂DA
∗

∂α
= − 2q

3(q−2α)2 < 0 and ∂DB
∗

∂α
= 2q

3(q−2α)2 > 0;

The derivative of the profit of the low-quality platform with respect to α is given by:

∂πA
∗

∂α
= −6q2 − 16qα + 16α2

9(q − 2α)2
< 0.

Notice that for the polynomial − (6q2 − 16qα + 16α2 ) yields no roots on the real space.

However, since both equilibrium prices and equilibrium market shares are decreasing in

α, the result is trivial.
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On the high-quality platform B, follows that:

∂πB
∗

∂α
=

16α(q − α)

9(q − 2α)2
Q 0.

The roots of the polynomial 16α(q−α) are given by αCR1 = 0 and αCR2 = q. By definition,

vertical dominance requires: q > 2. Since, by assumption, α ∈
(
0, 1

2

)
, it follows that

∂πB
∗

∂α
> 0 for α ∈

(
0, 1

2

)
. Lemma 6 is, now, straightforward. �

7.3 Appendix C - Intermediate equilibrium details

As mentioned in the paper, the white region corresponds to the equilibrium candidate

occurring under the circumstances described in figure 1(b). In this situation, the equilib-

rium occurs in the strictly convex segment of DA and in the strictly concave segment of

DB. The profit of platform A is given by:

πA =
pA
[
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]

]
α2

,

while the profit of platform B is given by:

πB = 2pB
{

1−
[
q−α(1−α+pB−pA)−

√
q[q−2α(1−α+pB−pA) ]

]
2α2

}
.

Given the quasi-concavity of the profit function, an equilibrium price candidate is al-

ways an equilibrium as long as the price domain condition is verified. Under horizontal

dominance, the equilibrium is verified for:

1− α− q + qα
2
< pA∗ − pB∗ ≤ 1− α

and under vertical dominance, the equilibrium is verified for:

−(1 + α) + 2α
q
< pA∗ − pB∗ ≤ 1− α.

The best reply functions of platform A given the price charged by platform B are given

by: 
pA
(
pB
)

= 1− α + pB;

pA
(
pB
)

=
−3q+8α(1−α+pB)−√q

√
9q−16α(1−α+pB)

16α
;

pA
(
pB
)

=
−3q+8α(1−α+pB)+√q

√
9q−16α(1−α+pB)

16α
.
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Given an increment on the price of the high-quality platform, the low-quality platform

reacts by also increasing its price. Analytically:

dpA(pB)
dpB

= 1 ∪ dpA(pB)
dpB

= 1
2

(
1±

√
q√

9q−16α(1−α+pB)

)
.

We obtain that
dpA(pB)
dpB

> 0 in the third equality if and only if q > 2(1 − α + pB), that

is, under pure vertical differentiation. Intuitively, in the case of horizontal dominance,

the platform A reacts by decreasing it’s price when pB increases while under the case of

vertical dominance, platform A reacts increasing their price.

The best reply functions of platform B correspond three polynomials of degree three

relatively to pA and of degree six relatively to α. Focusing on the polynomial that belongs

to the real space R, we obtain:

pB
(
pA
)

=
3q−16α(1+pA)+−9q

2−288qα2−16α2(−1+pA+3α)2
γ

24α
.

with γ = γ(α, q, pA) representing a polynomial of degree three relatively to pA and of

degree six relatively to α. Because of this polynomial, we are not able to display closed-

form solutions. Thus, we apply the theorem of Debreu, Glicksberg and Fan (1952) (see,

for example, pp. 34 of Fudenberg and Tirole (1991) [12]) to mention that an equilibrium

exists for such parameter region corresponding to the intermediate equilibrium. �
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