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Abstract

Wavelet analysis is becoming more popular in the Economics discipline. Until re-
cently, most works have made use of tools associated with the Discrete Wavelet Trans-
form. However, after 2005, there has been a growing body of work in Economics and
Finance that makes use of the Continuous Wavelet Transform tools. In this article,
we give a self-contained summary on the most relevant theoretical results associated
with the Continuous Wavelet Transform, the Cross-Wavelet Transform, the Wavelet
Coherency and the Wavelet Phase-Difference. We describe how the transforms are
usually implemented in practice and provide some examples. We also introduce the
Economists to a new class of analytic wavelets, the Generalized Morse Wavelets, which
have some desirable properties and provide an alternative to the Morlet Wavelet. Fi-
nally, we provide a user friendly toolbox which will allow any researcher to replicate
our results and to use it in his/her own research.

Keywords: Economic cycles; Continuous Wavelet Transform, Cross-Wavelet Trans-
form, Wavelet Coherency, Wavelet Phase-Difference; The Great Moderation.

1 Introduction

Economic agents simultaneously operate at different horizons. For example, central banks
have different objectives in the short and long run, and operate simultaneously at different
frequencies (see Ramsey and Lampart [39]). More than that, many economic processes are
the result of the actions of several agents, who have different term objectives. Therefore,
economic time-series are a combination of components operating on different frequencies.
Several questions about the data are connected to the understanding of the time-series
behavior at different frequencies.

∗There is a Matlab toolbox associated with this paper, called ASToolbox, which is available at
http://sites.google.com/site/aguiarconraria/joanasoares-wavelets.

†NIPE and Economics Department, University of Minho. E-mail: lfaguiar@eeg.uminho.pt

‡Department of Mathematics and Applications, University of Minho. E-mail: jsoares@math.uminho.pt
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Fourier analysis allows us to study the cyclical nature of a time-series in the frequency
domain. In spite of its utility, however, under the Fourier transform, the time informa-
tion of a time series is completely lost. Because of this loss of information it is hard to
distinguish transient relations or to identify when structural changes do occur. Moreover,
these techniques are only appropriate for time-series with stable statistical properties, i.e.
stationary time-series.

As an alternative, wavelet analysis has been proposed. Wavelet analysis performs the
estimation of the spectral characteristics of a time-series as a function of time revealing how
the different periodic components of the time-series change over time. One major advantage
afforded by the wavelet transform is the ability to perform natural local analysis of a time
series. It stretches into a long wavelet function to measure the low frequency movements;
and it compresses into a short wavelet function to measure the high frequency movements.

Wavelets are becoming part of the standard set of tools available to an economist. The
pioneering work of Ramsey and Lampart [39, 38] and Ramsey [36, 37] was followed by
Gençay, Selçuk and B. Withcher [21, 20, 22], Wong, Ip, Xie and Lui [45], Connor and
Rossiter [9], Fernandez [15] and Gallegati and Gallegati [17]. However, all these works have
one common characteristic. They all rely on the Discrete Wavelet Transform (DWT).1

More recently, tools associated with the Continuous Wavelet Transform are becoming
more widely used. Raihan, Wen and Zeng [35], Jagrič and Ovin [27], Crowley and Mayes
[10], Aguiar-Conraria, Azevedo and Soares [1], Baubeau and Cazelles [3], Rua and Nunes
[41], Rua [40] and Aguiar-Conraria and Soares [2]; provide some examples of useful economic
applications of these tools.

Unfortunately, in our opinion, there is no good single reference for someone wanting
to use (continuous) wavelet tools, such as: the Continuous Wavelet Transform, the Cross-
Wavelet Transform, the Wavelet Coherency and the Wavelet Phase-Difference. Not only
the theoretic foundations are scattered among several papers and books, but also most
codes freely available imply rigid assumptions, which do not give much freedom of choice
to the researcher. For example, all the works cited in the previous paragraph make use of
the Morlet Wavelet.

This paper has three main purposes: (1) to give a self-contained summary on the most
relevant theoretical results, (2) to describe how the transforms are usually implemented in
practice and (3) to introduce the economist to a new family of wavelets that have some
desirable characteristics and that have the potential to become as popular as the Morlet
Wavelet. Attached to this paper, there is a Matlab toolbox implementing the referred
wavelet tools, which the researcher can freely use and adapt to his/her own research.

Among the several examples that we analyse we consider two real data applications. In
one of them, we show evidence that corroborates the arguments of Blanchard and Simon
[5] about the Great Moderation, who have argued that the Great Moderation started well
before 1983. In our second application we show how business cycles synchronization between
two neighbor countries, Portugal and Spain, evolve and how they are affected but by changes

1For an excellent review on discrete wavelet applications in economics, see Crowley [11].
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in their political and policy regimes.
This paper proceeds as follows. In Section 2, we describe the Continuous Wavelet Trans-

form. In Section 3, we introduce the cross-wavelet tools, which include the Cross-Wavelet
Power, Wavelet Coherency and Phase-Difference. Section 4 describes how to adapt the
theory in order to implement it computationally. Section 5 summarizes some of the results
already obtained in terms of significance testing. In Section 6, we describe some of the
characteristics of the Morlet Wavelet, responsible for its popularity. We also introduce a
new class of analytic wavelets, the Generalized Morse Wavelets (GMWs), that can poten-
tially become as useful as the Morlet Wavelet. We show that while the Morlet wavelets
represent a good compromise between frequency and time localization, GMWs allow for
more flexibility. In section 7, we provide some constructed examples of wavelet applications
and the two applications with real data. Section 8 concludes. In the appendix, we describe
the ASToolbox and some of our computational choices.

2 Continuous Wavelet Transform

2.1 Notations and Conventions

In what follows, L2(R) denotes the set of square integrable functions, i.e. the set of functions
defined on the real line and satisfying∫ ∞

−∞
|x(t)|2 dt <∞, (1)

with the usual inner product

〈x, y〉 :=

∫ ∞
−∞

x(t)y∗(t)dt (2)

and associated norm
‖x‖ := 〈x, x〉

1
2 . (3)

Here, and in what follows, the asterisk superscript is used to denote complex conjugation.
Since the (squared) norm of x(t), ‖x(t)‖2 =

∫∞
−∞ |x(t)|2dt is usually referred to as the

energy of x, the space L2(R) is also known as the space of finite energy functions.
In these notes, we always use the convention g(t)↔ G(ω) to denote a Fourier pair, i.e.

we denote by the the corresponding capital letter the Fourier transform of a given function.
Hence, if x(t) ∈ L2(R), X(ω) will denote its Fourier transform, here defined as:

X(ω) :=

∫ ∞
−∞

x(t)e−iωtdt. (4)

Note 2.1. With the above convention of the Fourier transform, ω is an angular (or radian) fre-

quency. The relation to the more common Fourier frequency f is given by f = ω
2π .
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We recall the well-known Parseval relation, valid for all x(t), y(t) ∈ L2(R) :

〈x(t), y(t)〉 =
1

2π
〈X(ω), Y (ω)〉, (5)

from which the Plancherel identity immediately follows:

‖x(t)‖2 =
1

2π
‖X(ω)‖2 . (6)

2.2 Wavelets

The minimum requirement imposed on a function ψ(t) ∈ L2(R) to qualify for being a
mother (admissible or analyzing) wavelet is that it satisfies a technical condition, usually
referred to as the admissibility condition, which reads as follows:

0 < Cψ :=

∫ ∞
−∞

|Ψ(ω)|
|ω|

dω <∞; (7)

see [12, p.22]. The constant Cψ above is called the admissibility constant.
The wavelet ψ is usually normalized to have unit energy: ‖ψ‖2 =

∫∞
−∞ |ψ(t)|2 dt = 1.

We should point out that the square integrability of ψ(t) is a very mild decay condition
and that, in practice, much more stringent conditions are imposed. In fact, for the purpose
of providing a useful time-frequency localization, the wavelet must be a reasonable well
localized function, both in the time domain as well as in the frequency domain. For func-
tions with sufficient decay, it turns out that the admissibility condition (7) is equivalent to
requiring that

Ψ(0) =

∫ ∞
−∞

ψ(t)dt = 0; (8)

again, see Daubechies [12, p.24]. This means that the function ψ has to wiggle up and down
the t−axis, i.e. it must behave like a wave; this, together with the assumed decaying prop-
erty, justifies the choice of the term wavelet (originally, in French, ondelette) to designate
ψ.

2.3 CWT

Starting with a mother wavelet ψ, a family ψτ,s of “wavelet daughters” can be obtained by
simply scaling and translating ψ:

ψτ,s(t) :=
1√
|s|
ψ

(
t− τ
s

)
, s, τ ∈ R, s 6= 0, (9)

where s is a scaling or dilation factor that controls the width of the wavelet (the factor
1/
√
|s| being introduced to guarantee preservation of the energy, ‖ψτ,s‖ = |ψ|) and τ is

a translation parameter controlling the location of the wavelet. Scaling a wavelet simply
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Figure 1: A typical wavelet

means stretching it (if |s| > 1) or compressing it (if |s| < 1), while translating it simply
means shifting its position in time.

Given a time-series x(t) ∈ L2(R), its Continuous Wavelet Transform (CWT) with re-
spect to the wavelet ψ is a function of two variables, Wx;ψ (τ, s), obtained by projecting
x(t), in the L2 sense, onto the family {ψτ,s} :

Wx;ψ (τ, s) = 〈x, ψτ,s〉 =

∫ ∞
−∞

x(t)
1√
|s|
ψ∗
(
t− τ
s

)
dt. (10)

Note 2.2. When the wavelet ψ is implicit from the context, we abbreviate the notation and simply

write Wx for Wx;ψ.

By well-known properties of the Fourier transform, one immediately sees that the CWT
(10) may also be represented in the frequency, as

Wx(τ, s) =

√
|s|

2π

∫ ∞
−∞

Ψ∗(sω)X(ω)eiωτdω. (11)

2.4 Inversion of CWT

The importance of the admissibility condition (7) comes from the fact that its fulfilment
guarantees that the energy of the original function x(t) is preserved by the wavelet trans-
form, i.e., the following Parseval-type relation holds:∫ ∞

−∞
|x(t)|2dt =

1

Cψ

∫ ∞
−∞

∫ ∞
−∞
|Wx(τ, s)|2 dτds

s2
, (12)

which, in turn, ensures the possibility of recovering x(t) from its wavelet transform. In
fact, due to the high redundancy of this transform (recall that a function of one variable is
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mapped into a bivariate function), many reconstruction formulas are available. For example,
when the wavelet ψ is real-valued, it is possible to reconstruct x(t) by using the formula

x(t) =
2

Cψ

∫ ∞
0

[∫ ∞
−∞

Wx(τ, s)ψτ,s(t)dτ

]
ds

s2
, (13)

showing that no information is lost if we restrict the computation of the transform only to
positive values of the scaling parameter s, which is a usual requirement, in practice.

One can also limit the integration over a selected range of scales, performing a band-pass
filtering of the original series.

2.5 Wavelet Power Spectrum and Wavelet Phase

In analogy with the terminology used in the Fourier case, the (local) Wavelet Power Spec-
trum (sometimes called Scalogram or Wavelet Periodogram) is defined as

(WPS)x(τ, s) = |Wx(τ, s)|2 . (14)

The Wavelet Power Spectrum may be averaged over time for comparison with classical
spectral methods. When the average is taken over all times, we obtain the so-called Global
Wavelet Power Spectrum:

(GWPS)x(s) =

∫ ∞
−∞
|Wx(τ, s)|2 dτ. (15)

When the wavelet ψ is complex-valued, the corresponding wavelet transform Wx(τ, s) is also
complex-valued. In this case, the transform can be separated into its real part, <{Wx(τ, s)},
and imaginary part, ={Wx(τ, s)}, or in its amplitude, |Wx(τ, s)|, and phase (or phase-angle),
φx(τ, s) : Wx(τ, s) = |Wx(τ, s)| eiφx(τ,s). Recall that the phase-angle φx(τ, s) of the complex
number Wx(τ, s) can be obtained from the formula:

φx(τ, s) = Arctan
(={Wx(τ, s)}
<{Wx(τ, s)}

)
. (16)

Note 2.3. We use Arctan to denote the following extension of the usual principal component of
the arctan function (whose range is (−π/2, π/2)):

Arctan

(
b

a

)
=



arctan( ba ) a > 0,

arctan( ba ) + π a < 0, b ≥ 0,

arctan( ba )− π a < 0, b < 0,

π/2 a = 0, b ≥ 0,

−π/2 a = 0, b < 0.

For real-valued wavelet functions, the imaginary part is constantly zero and the phase
is, therefore, undefined. Hence, in order to separate the phase and amplitude informa-
tion of a time-series, it is important to make use of complex wavelets. In this case, it is
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convenient to choose a wavelet ψ(t) whose Fourier transform is supported on the positive
real-axis only, i.e. is such that Ψ(ω) = 0 for ω < 0. A wavelet satisfying this property is
called analytic or progressive. When ψ is analytic and x(t) is real, reconstruction formulas
involving only positive values of the scale parameter s are still available; in particular, if
the wavelet satisfies 0 < |Kψ| <∞, where Kψ :=

∫∞
0

Ψ∗(ω)
ω dω, then one can use the follow-

ing reconstruction formula, known as the Morlet formula, which is particularly useful for
numerical applications:

x(t) = 2<
[

1

Kψ

∫ ∞
0

Wx(t, s)
ds

s3/2

]
; (17)

see, e.g. Farge [14] or Holschneider [25].
When the wavelet ψ is analytic, the corresponding wavelet transform is called an Ana-

lytic Wavelet Transform (AWT).

Remark: Throughout the rest of this paper, we assume that all the wavelets considered
are analytic and hence, that the wavelet transform is computed only for positive values of
the scaling parameter s. For this reason, in all the formulas that would normally involve
the quantity |s|, this will be replaced by s.

2.6 Localization Properties

In order to describe the time-frequency localization properties of the CWT, we have to as-
sume that both the wavelet ψ(t) and its Fourier transform Ψ(ω) are well localized functions.
More precisely, these functions must have sufficient decay to guarantee that the quantities
defined below are all finite.2 We define the center in time of the wavelet ψ , µt;ψ, by

µt;ψ =
1

‖ψ‖2

∫ ∞
−∞

t |ψ(t)|2 dt, (18)

and, as a measure of concentration of ψ around its center, we take the standard deviation
in time, σt;ψ (also known as the radius in time):

σt;ψ =
1

‖ψ‖

{∫ ∞
−∞

(t− µt;ψ)2 |ψ(t)|2 dt
} 1

2

. (19)

The center in frequency, µω;ψ, and the standard deviation (or radius) in frequency, σω;ψ,
of ψ are defined as

µω;ψ =
1

‖Ψ‖2

∫ ∞
−∞

ω |Ψ(ω)|2 dω (20)

and

σω;ψ =
1

‖Ψ‖

{∫ ∞
−∞

(ω − µω;ψ)2 |Ψ(ω)|2 dω
} 1

2

. (21)

2The precise requirements are that |ψ(t)| < C(1 + |t|)−(1+ε) and |Ψ(ω)| < C(1 + |ω|)−(1+ε), for C <∞,
ε > 0.
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Note 2.4. 1. If wavelet ψ is known from the context, we will suppress the index ψ in the
notation of the above quantities, e.g. we will simply use µt for µt;ψ, etc.

2. The quantities µt and σt are the mean and standard deviation of the probability density

function (p.d.f.) defined by |ψ(t)|2
‖ψ‖2 ; a similar meaning, but associated with the p.d.f. defined

by |Ψ(ω)|2
‖Ψ‖2 , exists for µω and σω.

The interval [µt − σt, µt + σt] is the set where ψ(t) attains its “most significant” values
whilst the interval [µω − σω, µω + σω] plays the same role for Ψ(ω).

The rectangle
Hψ := [µt − σt, µt + σt]× [µω − σω, µω + σω] (22)

in the (t, ω)−plane is called the Heisenberg box or window for the function ψ. We then say
that ψ is localized around the point (µt, µω) of the time-frequency plane, with uncertainty
given by Aψ, where

Aψ := σtσω. (23)

The value Aψ is also called the Heisenberg area associated with the function ψ and is
conventionally used as a measure of the degree of energy localization of the wavelet.3 The
Heisenberg uncertainty principle establishes that the Heisenberg area is bounded from below
by the quantity 1/2, i.e. for all ψ ∈ L2(R), we have

σtσω ≥
1

2
. (24)

Recalling that the wavelet daughter ψτ,s is obtained from its mother ψ by a simple trans-
lation by τ and a scaling by s, it is very easy to show that the center and radius in time of
ψτ,s are given by µt;ψτ,s = τ+sµt and σt;ψτ,s = sσt. Also, from well-known properties of the
Fourier transform, one can easily show that the center and radius in frequency of ψτ,s are
given by µω;ψτ,s = µω

s and σω;ψτ,s = σω
s , respectively. In particular, if the mother wavelet ψ

is centered at t = 0, i.e. if µt = 0,4 then the window associated with ψτ,s becomes

Hψτ,s = [τ − sσt, τ + sσt]×
[µω
s
− σω

s
,
µω
s

+
σω
s

]
. (25)

In this case, one has

Wx (τ, s) = 〈x(t), ψτ,s(t)〉 =

∫ ∞
−∞

x(t)ψ∗τ,s(t)dt ≈
∫ τ+sσt

τ−sσt
x(t)ψ∗τ,s(t)dt (26)

and, by the Parseval relation,

Wx (τ, s) = 2π〈X(ω),Ψτ,s(ω)〉 = 2π

∫ ∞
−∞

X(ω)Ψ∗τ,s(ω)dω ≈ 2π

∫ µω
s

+σω
s

µω
s
−σω

s

X(ω)Ψs,τ (ω)dω.

(27)

3This value is simply 1
4

of the area of the Heisenberg window Hψ, which justifies the name.

4Note that this can easily be achieved by an appropriate translation.

8



We thus conclude that the continuous wavelet transform Wx(τ, s) gives us temporal infor-
mation on x(t) around the instant t(τ) = τ , with precision sσt, and frequency information
about X(ω) around the frequency

ω(s) =
µω
s
, (28)

with precision σω
s .

Although the area of the windows is constant (given by 4σtσω), their dimensions change
according to the scale; the windows stretch for large values of s (broad scales s – low
frequencies ωs = σω

s ) and compress for small values of s (fine scale – high frequencies σω
s ).

This is one major advantage afforded by the wavelet transform, when compared, with the
other standard method of time-frequency localization, the short time Fourier transform:
its ability to perform natural local analysis of a time-series in the sense that the length of
wavelets varies endogenously; it stretches into a long wavelet function to measure the low
frequency movements; and it compresses into a short wavelet function to measure the high
frequency movements.

-

6

τ1

s1

τ2

s2

Figure 2: Windows associated with a wavelet transform

2.7 Scale/Frequency Relation and Fourier Factor

Formula (20) is commonly used to convert scales into frequencies. But, we should have
in mind that this inverse relation between scale and frequency corresponds to a particular
interpretation and that there are other meaningful ways of assigning frequencies to scales.
In Lilly and Olhede[31], the authors consider, apart from value of µω;ψ given by (20), which
they call the energy-frequency, and which, for convenience, we will now denote by ωEψ , i.e.

ωEψ =
1

‖Ψ‖2

∫ ∞
−∞

ω |Ψ(ω)|2 dω, (29)

two other specific frequencies associated with the wavelet:
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� the peak frequency, ωPψ , defined as the frequency at which the magnitude of the
Fourier transform of ψ, |Ψ(ω)|, is maximized, i.e.

|Ψ(ωPψ )| = sup
ω∈R
|Ψ(ω)|; (30)

� the central instantaneous frequency, ωIψ, defined as the value that the so-called time-
varying instantaneous frequency of the wavelet takes at its center (here assumed to
be 0), i.e.

ωIψ = ω̆ψ(0), (31)

where ω̆(t), is the time-varying instantaneous frequency of the wavelet, defined by

ω̆ψ(t) =
d

dt
={lnψ(t)} =

d

dt
arg{ψ(t)}. (32)

To each of the three specific frequencies, ωEψ , ω
P
ψ and ωIψ they associate an interpretation of

scale as frequency. More precisely, they define

ω(s) =
ωψ
s
, (33)

with ωψ denoting any of the three specific frequencies. Note that ω(s), as well as ωEψ , ω
P
ψ

and ωIψ, are all angular frequencies. If we prefer a relation between the scale and the usual
“Fourier” frequency f (expressed in cycles per unit time), we have

f(s) =
ωψ
2πs

. (34)

The relation between scale and wavelength or period (inverse of usual frequency) is, there-
fore, given by

λ(s) =
2π

ωψ
s. (35)

The factor

Ff :=
2π

ωψ
(36)

is referred to as the Fourier factor of the wavelet and is used, in the programs, to convert
scales to periods.

To see that the three correspondences ω(s) =
ωψ
s , ωψ = ωPψ , ω

E
ψ , ω

I
ψ are all meaningful

(although in different senses) we refer the reader to the mentioned paper by Lilly and Olhede
[31].

Naturally, it will be convenient to choose a wavelet whose associated frequencies ωEψ , ω
P
ψ

and ωIψ have all the same (or, at least, very similar) value, since this will give us a unified
view of the relation between frequency and scale.
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3 Cross-Wavelet Analysis

In many applications, one is interested in detecting and quantifying relationships between
two non-stationary time series. The concepts of Cross-Wavelet Power, Wavelet Coherency
and Wavelet Phase-Difference are natural generalizations of the basic wavelet analysis tools
that enable us to appropriately deal with the time-frequency dependencies between two
time-series.

Remark: From now on, all the quantities we are going to introduce (e.g. Cross-Wavelet
Transform, Wavelet Coherency, etc.) are functions of time and scale (or frequency). In
order to simplify the notation, we will describe these quantities for a specific value of the
argument (τ, s) and this value of the argument will, unless strictly necessary, be omitted in
the formulas.

3.1 Cross-Wavelet Transform and Cross-Wavelet Power

The Cross-Wavelet Transform (XWT) of two time-series, x(t) and y(t), first introduced by
Hudgins, Friehe and Mayer [26], is simply defined as

Wxy = WxW
∗
y , (37)

where Wx and Wy are the wavelet transforms of x and y, respectively. 5

We also define the Cross-Wavelet Power, as

(XWP )xy = |Wxy| . (38)

While we can interpret the Wavelet Power Spectrum as depicting the local variance of a
time-series, the Cross-Wavelet Power of two time-series depicts the local covariance between
these time-series at each time and frequency. Therefore, the Cross-Wavelet Power gives us
a quantified indication of the similarity of power between two time-series.

3.2 Complex Wavelet Coherency

In analogy with the concept of coherency used in Fourier analysis, given two time-series
x(t) and y(t) one can define their Complex Wavelet Coherency %xy by:

%xy =
S (Wxy)[

S (|Wx|2) S (|Wy|2)
]1/2 , (39)

where S denotes a smoothing operator in both time and scale; smoothing is necessary, be-
cause, otherwise, coherency would be identically one at all scales and times. Time and scale
smoothing can be achieved, e.g. by convolution with appropriate windows; see Cazelles,
Chavez, de Magny, Guégan and Hales [7] or Grinsted, Moore and Jevrejeva [24], for details.

5When y = x, we obtain the Wavelet Power Spectrum Wxx = |Wx|2 = (WPS)x.
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3.3 Wavelet Coherency and Phase-Lead

The complex wavelet coherency can be written in polar form, as
%xy = |%xy| eiφxy . The absolute value of the complex wavelet coherency is called the Wavelet
Coherency and is denoted by Rxy, i.e.

Rxy =
|S (Wxy) |[

S (|Wx|2) S (|Wy|2)
]1/2 . (40)

The angle φxy of the complex coherency is called the Phase-Difference (phase lead of x over
y), i.e.

φxy = Arctan
(= (S (Wxy))

< (S (Wxy))

)
(41)

Note 3.1. 1. As in the case of the usual (Fourier) coherency, Wavelet Coherency satisfies the
inequality

0 ≤ Rxy(τ, s) ≤ 1 (42)

whenever the ratio (40) is well defined. At points (τ, s) for which

S
(
|Wx (τ, s) |2

)
S
(
|Wy (τ, s) |2

)
= 0

we will define Rxy(τ, s) = 0.

2. The Phase-Difference is sometimes defined using the spectra without smoothing, i.e.

φxy = Arctan
(= (Wxy)

< (Wxy)

)
. (43)

In this case, one has φxy = φx − φy, 6 justifying its name.

A Phase-Difference of zero indicates that the time series move together at the specified
time-frequency; if φxy ∈ (0, π2 ), then the series move in phase, but the time-series y leads x; if
φxy ∈ (−π

2 , 0), then it is x that is leading; a Phase-Difference of π (or −π) indicates an anti-
phase relation; if φxy ∈ (π2 , π), then x is leading; time-series y is leading if φxy ∈ (−π,−π

2 ).
With the Phase-Difference, one can also calculate the Instantaneous Time-Lag between

the two time-series x and y:

(∆T )xy(τ, s) =
φxy(τ, s)

ω(τ)
, (44)

where ω(τ) is the angular frequency that corresponds to the scale s.

6To be more precise, the above relation holds after we convert φx − φy into an angle in the interval
[−π, π].
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4 Discrete Computations

4.1 Discretized CWT

Suppose we sample the series x(t) with a fine enough sample interval δt to avoid aliasing
(i.e. assume that X(ω) ≈ 0 for |ω| > 2π

2δt = π
δt) and use the shorthand notation xn =

x(nδt);n = 0, . . . , N − 1. Also, let x = {xn;n = 0, . . . , N − 1}. With N even, formula (11)
can be discretized as

Wx(τ, s) ≈
√
s

2π

∫ π
δt

− π
δt

X(ω)Ψ∗ (sω) eiωτdω

≈
√
s

2π

2π

Nδt

N/2∑
k=−(N/2)+1

X

(
2πk

Nδt

)
Ψ∗
(
s2πk

Nδt

)
ei

2πk
Nδt

τ

=

√
s

Nδt

N/2∑
k=−(N/2)+1

X

(
2πk

Nδt

)
Ψ∗
(
s2πk

Nδt

)
ei

2πk
Nδt

τ

But, X
(

2πk
Nδt

)
≈ δt x̂k, where x̂k =

∑N−1
n=0 xne

−i2πnk/N is the kth element of the Discrete
Fourier Transform (DFT) of theN -vector (x0, . . . , xN−1); see e.g. Brémaud [6, p.99]. Hence,
we obtain a discretized form of the CWT of the discrete time-series x = {xn : 0, . . . , N−1} :

Wx(τ, s) =

√
s

N

N/2∑
k=0

x̂kΨ
∗(s

2πk

Nδt
)e

i2πkτ
Nδt

+

√
s

N

N−1∑
k=(N/2)+1

x̂kΨ
∗(s

2π(k −N)

Nδt
)e

i2π(k−N)τ
Nδt

where we used the periodicity x̂k = x̂k−N . When τ = mδt; m = 0, . . . , N − 1, we get

Wx(mδt, s) =

√
s

N

N/2∑
k=0

x̂kΨ
∗(s

2πk

Nδt
)e

i2πkm
N

+

√
s

N

N−1∑
k=(N/2)+1

x̂kΨ
∗(s

2π(k −N)

Nδt
)e

i2πkm
N

=

√
s

N

N−1∑
k=0

x̂kΨ
∗(swk)e

i2πkm
N

where

wk =

{
2πk
Nδt , k = 0, 1, . . . , N2 ,
2π(k−N)
Nδt , k = N

2 + 1, . . . , N − 1.
(45)
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In practice, naturally, the wavelet transform is computed only for a selected set of scale
values s ∈ {s`, ` = 0, . . . , F − 1} (corresponding to a certain choice of frequencies ω`).
Hence, our computed wavelet spectrum of the discrete-time series x will simply be a F ×N
matrix Wx (wavelet spectral matrix) whose (`,m) element is given by

Wx(`,m) =

√
s`
N

N−1∑
k=0

x̂kΨ
∗(s`wk)e

i2πkm
N , (46)

with wk given by (45).7 The above formula is an efficient formula for computing the CWT,
since, for each scale s`, its right-hand side is simply the inverse DFT of the sequence
(z`0, . . . , z

`
N−1) where

z`k :=
√
s` x̂k Ψ∗(s`wk); k = 0, . . . , N − 1,

and can, therefore, be calculated using an inverse FFT.

4.1.1 Choice of scales

The scales are usually chosen as fractional powers of 2:

s` = s0 2
`
nV ; ` = 0, 1, . . . , nV × nO, (47)

where nO denotes the number of octaves (i.e. powers of two) and nV the number of voices
calculated per octave (i.e., F = nV × nO + 1).

4.1.2 Cone of influence

As with other types of transforms, the CWT applied to a finite length time-series inevitably
suffers from border distortions; this is due to the fact that the values of the transform at the
beginning and the end of the time-series are always incorrectly computed, in the sense that
they involve missing values of the series which are then artificially prescribed. When using
the formula (46), a periodization of the data is assumed. However, before implementing
formula (46), one usually pads the series with zeros, to avoid wrapping. Since the “effective
support” of the wavelet at scale s is proportional to s, these edge-effects also increase with
s. The region in which the transform suffers from these edge effects is called the cone of
influence (COI). In this area of the time-frequency plane the results are subject to border
distortions and have to be interpreted carefully.

7We choose to make the row indexes of the matrix correspond to scales and the columns to times, so
that the plots of this matrix will naturally lead to times in the x-axis and frequencies (or periods) in the
y-axis.
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4.2 Other Discretized Wavelet Measures

Naturally, all the formulas given previously for other wavelet measures, such as the Cross-
Wavelet Transform, the Wavelet Coherency and the Phase-Difference have discrete coun-
terparts. For example, corresponding to formula (37) for the Cross-Wavelet Transform, we
have a discretized version

Wxy(`,m) = Wx(`,m)W∗
y(`,m). (48)

Formula (43) for the phase-difference is discretized as

φxy(`,m) = Arctan
(= (Wxy(`,m))

< (Wxy(`,m))

)
. (49)

5 Significance Tests

As with other time-series methods, it is important to assess the statistical significance of
the results obtained by wavelet analysis.

The seminal paper by Torrence and Compo [43] is one of the first works to discuss
significance testing for wavelet and cross-wavelet power.

By using a large number of Monte Carlo simulations, Torrence and Compo concluded
that the local wavelet power spectrum of a white or red noise signal, normalized by the
signal variance, has a chi-squared distribution:

D

(
|Wx (s, τ)|2

σ2
x

< p

)
=

1

2
Pfχ

2
v.

In the expression above, the value Pf is the mean spectrum of the background noise at the
Fourier frequency f that corresponds to the wavelet scale s and ν is equal to 1 or 2, for
real or complex wavelets, respectively.

Torrence and Compo also derived empirical distributions for Cross-Wavelet Power. If
two time-series are generated by stationary processes with Fourier spectra P xk and P yk then
the cross wavelet distribution is given by

D

(
|Wxy(τ, s)|
σxσy

< p

)
=
Zν(p)

ν

√
P xk P

y
k ,

where, again, ν is 1 for real wavelets and 2 for complex wavelets and Zν(p) is the confidence
level for a given probability p for the square root of two chi-squared distributions; one can
find the confidence level Zν by inverting the integral p =

∫ Zν
0 fν(z)dz,where the p.d.f is

given by

fν(z) =
22−ν

Γ2(ν/2)
zν−1K0(z),
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where z is the random variable , Γ is the Gamma function Γ(z) :=
∫∞

0 tz−1e−tdt and K0(z)
is the modified Bessel function of order zero.

Two recent paper by Z. Ge,[18] and [19], reconsider the discussion of the significance
testing for the wavelet and cross-wavelet power.

In the first paper, the authors concentrate on the use of a specific wavelet (a Morlet
Wavelet) and, assuming a Gaussian white noise process, analytically derive the correspond-
ing sampling distribution of the Wavelet Power. The results obtained are in agreement with
the numerical conclusions from Torrence and Compo; however, this sampling distribution
was shown to be highly dependent on the local covariance structure of the wavelet, a fact
that makes the significance levels intimately related to the specific wavelet family used,
contradicting a statement made in Torrence and Compo [43].

In the second paper, the authors also derive analytical distributions for the Cross-
Wavelet Power Spectrum and Wavelet Coherence. Here, again, the analysis is done only for
the case of the Morlet Wavelet and with the assumption of two independent Gaussian white
noise background processes. For more general processes, one has to rely on Monte-Carlo
simulations.

6 Analytic Wavelets

The admissibility condition (7) is a very weak condition and, in theory, there are infinitely
many wavelets.

In practice, the choice of which wavelet to use is an important aspect to be taken into
account, and will be dictated by the kind of application one has in mind.

To study the synchronism between different time-series, it is important to select a
wavelet whose corresponding transform contains information on both amplitude and phase,
and hence, a complex-valued analytic wavelet is a natural choice.

As stated in Lilly and Olhede [31], the analytic wavelet transform (AWT) is the basis for
the wavelet ridge method, Delprat, Escudié, Guillemain, Kronland-Martinet, Tchamitchian
and and B. Torrésani [13], Mallat [32], which recovers time-varying estimates of instanta-
neous amplitude, phase, and frequency of a modulated oscillatory signal from the time/scale
plane. On the other hand, the analytic wavelet transform can also be useful for application
to very time-localized structures Tu, Hwang and Ho [44]. The many useful features of
analytic wavelets are covered in more depth by Selesnick, Baraniuk and Kinsbury [42]; see
also Olhede and Walden [34] and Lilly and Olhede [31].

In this section, we summarize some results concerned with the most used wavelet in
practice, the Morlet Wavelet (to our knowledge, every application of the continuous wavelet
transform in Economics have used this choice). We also present a particularly important
family of analytic wavelets, the so-called Generalized Morse Wavelets (GMWs), which are
more flexible and can be used as an alternative to the Morlet Wavelet. The results of
this section are derived from the papers by Olhede and Walden [34] and Lilly and Olhede
[30, 31].
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6.1 Morlet Wavelets

The Morlet Wavelets are a one-parameter family of functions, first introduced in Goupillaud,
Grossman and Morlet [23], and given by

ψω0 (t) = Keiω0te−
t2

2 . (50)

Strictly speaking, the above functions are not true wavelets, since they fail to satisfy the
admissibility condition. 8 For ψω0(t) to have unit energy, the normalizing constant K must
be chosen as

K = π−1/4, (51)

which, from now on, we will always assume to be true. The Fourier transform of the
normalized wavelet is given by

Ψω0(ω) =
√

2π1/4 e−
1
2

(ω−ω0)2 (52)

and, hence, Ψω0(0) =
√

2π1/4 e−ω0
2/2 6= 0. However, for sufficiently large ω0, e.g. ω0 > 5,

the values of Ψω0(ω) for ω ≤ 0 are so small that, for numerical purposes, Ψω0 can be
considered as an analytic wavelet; see Foufoula-Georgiou and Kumar [16].

The Morlet Wavelet became the most popular of the complex valued wavelets mainly
because of four interesting properties. First, for numerical purposes, as we have just seen,
it can be treated as an analytic wavelet. Second, the peak frequency, the energy frequency
and the central instantaneous frequency of the Morlet Wavelet are all equal and given by

ωPψω0
= ωEψω0

= ωIψω0
= ω0, (53)

facilitating the conversion from scales to frequencies. Third, the Heisenberg box area reaches
its lower bound with this wavelet, i,e, the uncertainty attains the minimum possible value:
σt;ψω0σω;ψω0

= 1
2 . In this sense, the Morlet Wavelet has optimal joint time-frequency con-

centration. Finally, the time radius and the frequency radius are equal,

σt;ψω0 = σω;ψω0 =
1√
2
, (54)

and, therefore, this wavelet represents the best compromise between time and frequency
concentration.

6.2 Generalized Morse Wavelets

In spite of its usefulness, the Morlet Wavelet suffers from some limitations. Mainly, because
it depends on just one parameter, implying that it is not very versatile. On top of that,

8In order to fulfill the admissibility condition, a correction term has to be added, as: ψω0 (t) =

K
(
eiω0t − e−ω

2
0/2

)
e−t

2/2.

17



because, even for numerical purposes, it cannot be considered analytic for ω0 < 5, the pa-
rameter choices are very restricted. To our knowledge, at least in economics, every paper
uses some value of ω0 ∈ [5, 6] . Finally, although it is true that the Morlet Wavelet has opti-
mal joint time-frequency concentration in the Heisenberg sense, it is also true that there are
other criteria available. “The whole set of generalized Morse wavelets are optimally local-
ized in that they maximize the eigenvalues of a joint time-frequency localization operator
(. . .) and indeed this is the way the generalized Morse wavelets were initially constructed.”
– in Lilly and Olhede [31, p.150].

The generalized Morse wavelets (GMWs) are a two-parameter family of wavelets, de-
fined, in the frequency domain, by

Ψβ,γ(ω) = Kβ,γ H(ω)ωβe−ω
γ

(55)

where Kβ,γ is a normalizing constant and H(ω) is the Heaviside unit step function.
To be a valid wavelet, one must have β > 0 and γ > 0. By varying these two parameters,

the generalized Morse wavelets can be given a broad range of characteristics while remaining
exactly analytic. In fact, these wavelets form a very wide family that subsumes may other
types of wavelets. It was shown in Lilly and Olhede [31] that the generalized Morse wavelets
encompass two other popular families of analytic wavelets: the Cauchy or Klauder wavelet
family (for γ = 1)9 and the analytic “Derivative of Gaussian” wavelets (for γ = 2).

The normalizing constant is frequently taken to ensure that the value of the Fourier
transform of the wavelet at the peak frequency is equal to 2, i.e. Ψ(ωPψ ) = 2. In order for
this to happen, the constant must be chosen as

Kβ,γ = KP
β;γ := 2

(
e γ

β

)β/γ
(56)

see, e.g. Lilly and Olhede [31, p.147].
Sometimes, the constant Kβ,γ is chosen in order to guarantee that ψβ,γ(t) has unit

energy, i.e. ‖ψβ,γ‖2 =
∫∞
−∞ |ψβ,γ(t)|2dt = 1, which, by the Parseval’s identity, is equivalent

to requiring that ‖Ψβ,γ‖2 =
∫∞

0 |Ψβ,γ(ω)|2dω = 2π.10 The corresponding value of the
constant is given by

Kβ;γ = KE
β,γ :=

2(r+1)/2√πγ√
Γ(r)

(57)

where

r =
2β + 1

γ
(58)

and Γ is the gamma function; see, e.g. Olhede and Walden [34, p. 2663].

9The Paul wavelets correspond to the case γ = 1 and β ∈ N
10The last integral extends only from 0 to ∞ due to the analyticity of the wavelet.
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6.2.1 Measures for the GMWs

Remark: When using a generalized Morse wavelet ψβ,γ with parameters β and γ, the
subscript “ψ” of any quantity referring to the wavelet ψ will be replaced by “β, γ”; e.g.,
the energy frequency ωEψ of ψβ,γ will be denoted by ωEβ,γ , etc.

For the generalized Morse wavelets, we have:

� The peak frequency is given by

ωPβ,γ =

(
β

γ

)1/γ

. (59)

� The energy frequency is given by

ωEβ,γ =
1

21/γ

Γ(2β+2
γ )

Γ(2β+1
γ )

. (60)

� The central instantaneous frequency is given by

ωIβ,γ =
Γ(β+2

γ )

Γ(β+1
γ )

= 21/γωEβ/2,γ . (61)

� The (squared) radius in time is given by

σ2
t;β,γ =

1

Γ̃
(

2β+1
γ

) {β2Γ̃

(
2β − 1

γ

)
+ γ2Γ̃

(
2β + 2γ − 1

γ

)
− 2βγΓ̃

(
2β + γ − 1

γ

)}
,(62)

where we have introduced the notation

Γ̃ (z) :=
Γ(z)

2z
;

the above formula can be derived in a similar manner to Formula (47) in Lilly and
Olhede [31].

� The frequency-domain radius (squared) is given by

σ2
ω;β,γ =

1

22/γ


Γ
(

2β+3
γ

)
Γ
(

2β+1
γ

) −
Γ

(
2β+2
γ

)
Γ
(

2β+1
γ

)
2
 ; (63)

the above formula can be derived in a similar manner to Formula (45) in Lilly and
Olhede [31].

A table with the localization measures (time-radius, frequency-radius and Heisenberg area)
for GMW ψβ;γ , for the values β, γ = 1, . . . , 10, is given below. In the last row, we also
indicate the measures for the Morlet Wavelet.
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Table 1: Measures for GMW

β γ σt σω Heis. Area β γ σt σω Heis. Area

1 1 1.0000 0.8660 0.8660 6 1 0.3015 1.8028 0.5436
2 1.7321 0.3367 0.5832 2 1.4460 0.3500 0.5061
3 2.0622 0.2576 0.5312 3 2.4178 0.2069 0.5002
4 2.2870 0.2283 0.5222 4 3.1682 0.1584 0.5019
5 2.4701 0.2138 0.5281 5 3.7732 0.1343 0.5067
6 2.6314 0.2055 0.5406 6 4.2827 0.1198 0.5130
7 2.7788 0.2003 0.5564 7 4.7262 0.1101 0.5202
8 2.9162 0.1968 0.5740 8 5.1219 0.1031 0.5280
9 3.0460 0.1945 0.5923 9 5.4815 0.0978 0.5362
10 3.1695 0.1928 0.6111 10 5.8129 0.0937 0.5448

2 1 0.5774 1.1180 0.6455 7 1 0.2774 1.9365 0.5371
2 1.5275 0.3438 0.5252 2 1.4412 0.3505 0.5051
3 2.0967 0.2405 0.5043 3 2.4749 0.2021 0.5002
4 2.4928 0.2025 0.5048 4 3.2864 0.1527 0.5017
5 2.8036 0.1831 0.5133 5 3.9450 0.1282 0.5059
6 3.0655 0.1715 0.5256 6 4.5011 0.1136 0.5115
7 3.2960 0.1638 0.5400 7 4.9857 0.1039 0.5178
8 3.5045 0.1585 0.5555 8 5.4180 0.0968 0.5247
9 3.6968 0.1546 0.5716 9 5.8107 0.0915 0.5319
10 3.8763 0.1517 0.5880 10 6.1723 0.0874 0.5394

3 1 0.4472 1.3229 0.5916 8 1 0.2582 2.0616 0.5323
2 1.4832 0.3468 0.5144 2 1.4376 0.3509 0.5044
3 2.1941 0.2285 0.5014 3 2.5262 0.1980 0.5001
4 2.7060 0.1859 0.5032 4 3.3931 0.1478 0.5016
5 3.1091 0.1642 0.5106 5 4.1011 0.1232 0.5053
6 3.4468 0.1511 0.5208 6 4.7005 0.1086 0.5103
7 3.7415 0.1424 0.5326 7 5.2233 0.0988 0.5159
8 4.0059 0.1361 0.5454 8 5.6898 0.0917 0.5220
9 4.2477 0.1315 0.5587 9 6.1134 0.0864 0.5285
10 4.4720 0.1280 0.5724 10 6.5034 0.0823 0.5352

4 1 0.3780 1.5000 0.5669 9 1 0.2425 2.1794 0.5286
2 1.4639 0.3484 0.5099 2 1.4349 0.3512 0.5039
3 2.2798 0.2196 0.5007 3 2.5729 0.1944 0.5001
4 2.8839 0.1743 0.5026 4 3.4908 0.1436 0.5014
5 3.3635 0.1513 0.5089 5 4.2446 0.1189 0.5048
6 3.7654 0.1374 0.5174 6 4.8845 0.1043 0.5093
7 4.1153 0.1281 0.5273 7 5.4431 0.0945 0.5144
8 4.4281 0.1215 0.5379 8 5.9418 0.0875 0.5199
9 4.7131 0.1165 0.5490 9 6.3947 0.0822 0.5257
10 4.9766 0.1126 0.5605 10 6.8113 0.0781 0.5317

5 1 0.3333 1.6583 0.5528 10 1 0.2294 2.2913 0.5257
2 1.4530 0.3493 0.5076 2 1.4327 0.3514 0.5034

(cont.)
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Measures for GMW (continued)

β γ σt σω Heis. Area β γ σt σω Heis. Area

3 2.3535 0.2126 0.5004 3 2.6157 0.1912 0.5001
4 3.0357 0.1654 0.5022 4 3.5810 0.1400 0.5013
5 3.5815 0.1417 0.5076 5 4.3778 0.1152 0.5044
6 4.0400 0.1275 0.5149 6 5.0557 0.1006 0.5085
7 4.4389 0.1179 0.5232 7 5.6482 0.0908 0.5131
8 4.7951 0.1110 0.5323 8 6.1774 0.0839 0.5181
9 5.1191 0.1058 0.5418 9 6.6579 0.0786 0.5234
10 5.4180 0.1018 0.5516 10 7.1000 0.0745 0.5288

Morlet σt σω Heis. Area
0.7071 0.7071 0.5000

7 Examples

We now give some examples illustrating the usefulness of the wavelet tools.11

7.1 Example 1: The Wavelet Power

We have argued before that the main advantage of wavelet analysis over spectral analysis
is the possibility of tracing transitional changes across time. To illustrate this, consider the
following experiment with simulated data. We generate 50 years of monthly data according
to the following data generating process:

yt = cos

(
2π

p1
t

)
+ cos

(
2π

p2
t

)
+ εt, t =

1

12
,

2

12
, . . . , 50, (64)

where p1 = 10 and p2 = 5, if 20 ≤ t ≤ 30, and p2 = 3, otherwise.
Formula (64) tells us that the time series yt is the sum of two periodic components and

a white noise.12 The first periodic component represents a 10 year cycle, while the second
periodic component shows some transient dynamics. In the beginning, it represents a 3
year cycle that, temporarily, changes to a 5 year cycle between the second and the third
decades.

11For each example, there exists an associated script – named Example num.m, where num is the example
number – which can be used to generate all the pictures accompanying the example. These scripts are
available in the folder Examples of the ASToolbox.

12This formulation is not as restrictive as it may seem. An autoregressive process of order 2, or higher,
with an oscillatory behavior, will have a solution that involves sines and cosines. We, therefore, could have
generated similar time series using a more common auto regressive process. We chose to explicitly have a
cosine because the period of the oscillation is observed directly.
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This change in the dynamics is nearly impossible to spot in Figure 3 (a). Furthermore,
if we use the traditional spectral analysis, the information on the transient dynamics is
completely lost, as we can see in Figure 3 (d). The power spectral density estimate is able
to capture both the 3-year and the 10-year cycles but it completely fails to capture the
5-year cycle that occurred between the second and the third decades. Comparing with
Figure 3 (c), we observe that spectral analysis gives us essentially the same information
as the Global Wavelet Power Spectrum, which is an average, across time, of the Wavelet
Power Spectrum.

Figure 3: (a) yt = cos( 2π
p1
t) + cos( 2π

p2
t) + εt. (b) Wavelet Power Spectrum of yt - the thick black

contour designates the 5% significance level based on an ARMA(1,1) null. The cone of influence,

which indicates the region affected by edge effects, is shown with a red line. The color code for

power ranges from blue (low Power) to red (high Power). The white lines show the maxima of the

undulations of the Wavelet Power Spectrum. (c) Global Wavelet Power Spectrum - average Wavelet

Power for each frequency. (d) Fourier Power Spectral Density.

On the other hand, Figure 3 (b) shows the Wavelet Power Spectrum itself. On the
horizontal axis, we have the time dimension. The vertical axis gives us the periods. The
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Power is given by the color. The color code for power ranges from blue (low Power) to red
(high Power). Regions with warm colors represent areas of high Power. The white lines
show the maxima of the undulations of the Wavelet Power Spectrum, therefore giving us a
more precise estimate of the cycle period. The black contour designates the regions where
the Wavelet Power is statistically significant at 5%. We observe a white line on period 10
across all times, meaning that there is a permanent cycle of this period. Both the red color
and the black contour tell us that this cycle is strong and statistically significant. We are
also able to spot the three year period cycle that occurs between time zero and 20 and,
again, between time 30 and 50. Finally, we are also able to spot a yellow/orange region
between time 20 and 30, with the white stripes identifying the cycle of period five. This
means that a cycle of roughly 5-year periodicity, relatively important in explaining the total
variance of the time-series and taking place between time 20 and 30, was hidden by the
Fourier Power Spectrum estimate.

Figure 3 (b) clearly illustrates the big advantage of wavelet analysis over spectral anal-
ysis. While the Fourier transform is silent about changes that happen across time, with
wavelets we are able to estimate the Power Spectrum as a function of time and, therefore,
we do not loose the time dimension. The Wavelet Power Spectrum is able to capture not
only the 3-year and 10-year cycles, but also to capture the change that occurred between
years 20 and 30.

7.2 Example 2: The Great Moderation in the United Sates

In Figure 4 (a), we have the real GNP (quarterly) growth rate for the United States,
from 1947q2 until 2010q1. In Figure 4 (b), one can observe the Wavelet Power Spectrum.
At business cycle frequencies, the Wavelet Power was high and statistically significant,
until early 1960s. After that, the volatility at all frequencies steadily decreased, with an
exception between mid 1970s and 1984, when the variance at the business cycle frequency
(1 to 8 years) was quite high again, probably as a result of the severe oil crisis that hit the
world economy in 1973 and 1979 and lasted until the early 1980s.

The literature has identified 1984 as the year that marks the beginning of the Great
Moderation (Kim and Nelson, [29]; McConnell and Pérez-Quirós, [33]). In reality, we can
observe that this Great Moderation may have started sometime earlier. It was in the early
1960s that the volatility started to decrease. It then was revived, due to the oil shocks,
at the business cycle frequency in the 1970s, however this increase was temporary. These
results are in line with Blanchard and Simon [5] who have argued that the large shocks in
the 1970s and the deep contraction in early 1980s hide from view the longer term volatility
decline that began a few decades before. As one would expect, given the turbulence of
the last years, after 2007 there is again evidence that volatility is increasing. We see this
because the Wavelet Power Spectrum becomes statistically significant in the late 2000s at
1.5 to 5 years frequencies. Although part of this region may be affected by edge effects
(because it is under the effect of the cone of influence), it is also true that because of the
zero padding, this influence will tend to underestimate, instead of overestimate, the Power

23



Figure 4: (a) GNP (quarterly) growth rate for the United States; (b) Wavelet Power Spectrum -

the thick black contour designates the 5% significance level based on an ARMA(1,1) null and the

grey contour the 10% significance level. The cone of influence, which indicates the region affected

by edge effects, is shown with a red line. The color code for power ranges from blue (low Power)

to red (high Power). The white lines show the maxima of the undulations of the Wavelet Power

Spectrum.
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Spectrum.

7.3 Example 3: The Cross-Wavelet and the Phase-Difference

Consider now two time series that share two common cycles, with some delays:

xt = sin

(
2π

3
t

)
+ 3 sin

(
2π

6
t

)
+ εx,t, t = 0,

1

12
,

2

12
, . . . , 50, (65)

yt =


4 sin

(
2π
3 (t+ 4.5

12 )
)
− 3 sin

(
2π
6 (t− 9

12)
)

+ εy,t, t = 0, 1
12 ,

2
12 , . . . , 25,

4 sin
(

2π
3 (t− 4.5

12 )
)
− 3 sin

(
2π
6 (t+ 9

12)
)

+ εy,t, t = 25 + 1
12 , 25 + 2

12 , . . . , 50;
(66)

see Figure 5 (a). Looking at the formulas, it is clear that xt and yt share 3-year and 6-year
cycles. However, how their cycles relate to each other evolve with time and are different
across frequencies from cycle to cycle. Consider the shorter period cycle, the 3-year cycle.
The cycles are positively correlated. However, while for the first half of the sample the yt
cycle precedes the xt cycle by 4 and a half months, in the second half of the sample the yt
cycle lags the xt cycle.

These features are captured in Figure 5 (b)-(d). On the left, we have the Wavelet Co-
herency. On the right we have the Phases and Phase-Difference computed for two different
frequency bands. On the top, we compute the phases for the 2.5 ∼ 3.5 year frequency band.
In the bottom, we consider the 5 ∼ 7 year frequency band. The green line represents the yt
Phase and the blue represents the xt Phase. The red line represents the Phase-Difference.

That both series have common and highly correlated 3-year and 6-year cycles is revealed
by the regions of strong Coherency around those frequencies. That the 3-year cycles are
in phase (positively correlated) is revealed by the Phase-Difference (red line in the upper
right graph), which is consistently situated between −π/2 and π/2. Finally, we can see that
the 3-year yt cycle was leading for the first half of the time and lagging in the second half,
by noting that in the first half of the sample the Phase-Difference is between zero and π

2 ,
while in the second half it is between −π

2 and zero.
Looking at the 6-year cycle, we observe that the series are out of phase (negatively

correlated) with xt leading in the first half and yt leading in the second half of the sample.
In this example, we observe that not only the wavelets are adequate to capture structural

breaks and transient relations, but that they can also distinguish between different relations
that occur at the same time but at distinct frequencies.

7.4 Example 4: Business Cycle Synchronization Between Portugal and
Spain

In Figure 6 (a), we have the industrial production (yearly) growth rates for Portugal (blue
line) and Spain (green line), from 1970:01 until 2010:05. We can use Wavelet Coherency,
the Phases, and Time-Lag, to check how synchronized the business cycle is between these

25



Figure 5: (a) xt (blue line) given by Eq.(65) and yt (red line) given by Eq.(66). (b) Wavelet

Coherency - the cone of influence is shown with a red line. The thick contour designates the

5% level based on a ARMA(1,1) null. Coherency ranges form blue (low Coherency) to red (high

Coherency). (c) - (d) Phases and Phase-Difference. The green line represents the yt Phase, the

blue line the xt Phase and the red line represents the Phase-Difference; (c) is for the 2.5 ∼ 3.5 year

frequency band and (d) for the 5 ∼ 7 year frequency band.
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Figure 6: (a) Industrial production (yearly) growth rates for Portugal (blue line) and Spain (green

line). (b) Wavelet Coherency - the cone of influence is shown with a red line. The black thick

contour designates the 5% significance level based on an ARMA(1,1) null and the grey contour the

10% significance level. Coherency ranges form blue (low Coherency) to red (high Coherency). (c)

Phases and Time-Lag - The blue line represents the Phase for Portugal, the green line the Phase

for Spain and the red line represents the Instantaneous Time-Lag between Spain and Portugal.
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two countries. In 6 (b), we see that until early 1980s, the two time series are highly
coherent and in 6 (c) we observe that their Phases, at business cycle frequencies 3 ∼ 8
years period cycles, were almost perfectly aligned in this period. Although the precise
details are different, these two countries, in the first half of the decade of 1970, had proto-
fascist regimes (Kallis [28]) and in the second half of the decade they became democratic.
They applied together to be part of the European Economic Community, which they joined
in the first of January of 1986. In 1982, Portugal had a severe Current Account crisis that
led to an IMF intervention in 1983. This coincides with the de-synchronization between
the two countries business cycles. Between 1986 and 1995, the two countries became more
synchronized again, as we can see in 6 (b), however the Phases were not aligned anymore.
Instead, the Time-Lag betwwen Spain and Portugal (red line) tells us that the Portuguese
business cycle was lagging the Spanish one. After 1999, when both countries joined the
Euro, the Time-Lag started approaching zero. After 2002, the Time-Lag became almost
zero, suggesting that the business cycles became aligned again. After 2004, we also observe
a region of high Coherency, which reinforces our previous conclusion. Therefore, coinciding
with the adoption of a common currency, the business cycles became more synchronized.

7.5 Example 5: Frequency versus Time Accuracy

The purpose of this example is to illustrate the influence of the wavelet on the results of
the corresponding AWT.

We first consider a series which is a sum of two pure oscillations, corrupted with some
noise:

xt = cos(2πt/3) + cos(2πt/4.5) + εt; t =
1

12
,

2

12
, . . . , 50; (67)

see Fig 7 (a). The first periodic component corresponds to a 3 year cycle and the second
to a 5 year cycle. We analyze this series with three different wavelets: two GMWs ψβ,γ ,
the first with β = 8 and γ = 10 and the second with β = 20 and γ = 0.5, and the Morlet
Wavelet ψMω with ω = 6.0. The values of the time-radius, frequency-radius and Heisenberg
area of these wavelets are given by

σt;8,10 = 6.5034 σω;8,10 = 0.0823 Aψ8,10 = 0.5352

σt;20,0.5 = 0.0014 σω;20,0.5 = 376.9287 Aψ20,0.5 = 0.54015

σt;ψM6.0
= 0.7071 σω;ψM6.0

= 0.7071 AψM6.0
= 0.5

(68)

Hence, the wavelet with best localization in frequency is the GMW ψ8,10, whilst the one with
worst localization in frequency is ψ20,0.5. The Morlet Wavelet has a frequency localization
between the other two wavelets. Figure 7 (b) displays the wavelet power computed with each
of these wavelets. Observing this picture, the different capacities of frequency localization
of the wavelets becomes very apparent. On the left, we have the Power computed with
the GMW ψ8,10 and we are able to fully separate the 3 year cycle, from the 4.5 year cycle.
The picture in the middle corresponds to the use of the wavelet with the poorest frequency
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Figure 7: (a) xt = cos(2πt/3) + cos(2πt/4.5) + εt. (b) - (d) Wavelet Power Spectrum of xt using:

(b) GMW ψ8,10; (c) GMW ψ20,0.5 ; (d) Morlet with ω0 = 6.0

localization, the GMW ψ20,0.5. With this wavelet, we completely loose the capacity to
discriminate the two periods. Finally, with the Morlet Wavelet, whose picture is on the
right, we can still recognize the two periodic components, although not so clearly.

To test the different capacities of localization in time, we consider the case of a series
yt corresponding to the sum of two Dirac-delta functions:

yt =

{
0 for t = 1

12 ,
2
12 . . . , 50, t 6= 20, 30,

1 for t = 20, 30.
(69)

We again analyze this series with the same three wavelets considered before. As far as
localization in time is concerned, we observe that the wavelet ψ10,0.25 is the best localized,
followed by the Morlet, the GMW ψ8,10 being the worst of all.

In Figure 8, which displays the Wavelet Power computed with each of these wavelets,
one can clearly distinguish the time discrimination capacities of the wavelets.
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Figure 8: Wavelet Power Spectrum of yt of Eq.(69) using: (a) GMW ψ8,10; (b) GMW ψ20,0.5 ; (c)

Morlet with ω0 = 6.0
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8 Conclusion

In this paper, we argued that Wavelet Analysis can be a very useful tool to analyze business
cycles. The main objective of this paper was to present a self-contained summary on
the most relevant theoretical results related to the Continuous Wavelet Transform and to
describe how such transforms can be implemented in practice. We also presented some
results on a new family of wavelets, the Generalized Morse Wavelets, which are becoming
more popular in other scientific fields and allow for more flexibility than the popular Morlet
Wavelet, while keeping some of its nice properties. To illustrate the potentialities of Wavelet
Analysis and to provide some easy to do examples, we worked out four constructed examples
and two real data applications. The constructed examples were put together to show how
Wavelet Analysis can easily capture transient cycles that are not stable across time and
frequencies; how cross wavelets can capture transient relationships between two time-series
at different frequencies; and to illustrate different mother wavelets perform in the time-
frequency domains with different types of signals. We also provide two applications with
real data. In one of them, we study the post-war business cycle volatility in the United
States, by looking at real GNP growth rates. We concluded that while it is true that
business cycles were very active during the 70s and early 80s (after the oil price shocks
in the 70s), it is also true that our results support the view of Blanchard and Simon [5],
according to whom the large shocks in the 1970s disguised the fact that the moderation
had begun a few decades earlier. We also used Industrial Production data for Portugal and
Spain since 1970 to analyze the synchronization between their business cycles. Who showed
that while both countries had authoritarian proto-fascist regimes, their business cycles were
highly coordinated, and that after 1986, when both countries joined the European Union,
Portuguese cycles lagged the Spanish ones, until both countries adopted a common currency
in 1999. After that point in time, their cycles became more coordinated and, by 2004 their
cycles were, again, perfectly aligned.

Attached to this paper, there is a Matlab toolbox implementing the referred wavelet
tools, which the researcher can freely use and adapt to his/her own research.
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[22] R. Gençay, F. Selçuk, and B.Withcher. Multiscale systematic risk. Journal of Inter-
national Money and Finance, 24:55–70, 2005.

[23] P. Goupillaud, A. Grossman, and J. Morlet. Cycle-octave and related transforms in
seismic signal analysis. Geoexploration, (23):85–102, 1984.

[24] A. Grinsted, J. C. Moore, and S. Jevrejeva. Application of the cross wavelet transform
and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph., 11:561–566,
November 2004. Part of Special Issue Nonlinear analysis of multivariate geoscientific
data- advanced methods, theory and application.

[25] M. Holschneider. Wavelets: An Analysis Tool. Clarendon Press, Oxford, 1995.

[26] L. Hudgins, C. A. Friehe, and M. E. Mayer. Wavelet transforms and atmospheric
turbulence. Phys.Rev. Lett., 71(20):3279–3282, 1993.
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A ASToolbox

The folder ASToolbox contains a series of matlab functions implementing the continuous
wavelet tools described in this paper. Our main objective was to collect into one single
directory all the functions necessary to use these tools and also to provide some scripts
illustrating their use. This, we hope, will encourage newcomers to the field to make tests
with their own data and might contribute to the dissemination of the use of wavelets, not
only in economics and finance, but possibly in other areas.

Please acknowledge the use of our functions in any publications:
Wavelet software was provided by L. Aguiar-Conraria and M. J. Soares and is available

at http://sites.google.com/site/aguiarconraria/joanasoares-wavelets We would also appreciate
that a copy of such publications was sent to one of us.

Any critics, comments and suggestions to improve our functions are most welcome!

The folder ASToolbox is divided into two sub-folders:

1. Functions – containing all the matlab functions. This has two sub-folders:

� Auxiliary – containing some auxiliary functions to, e.g. generate surrogate se-
ries or compute Fourier spectra; it also contains a function to compute measures
associated with generalized Morse wavelets.

� WaveletTransforms – containing functions to compute the (Analytic) Wavelet
Transform, Cross-Wavelet Transform, Wavelet Coherency, Wavelet Phase-Difference
and Time-Lag.

2. Examples – containing matlab scripts to generate the pictures associated with each
of the Examples in Section 7.

Some of our functions are based on (parts of) functions written by Christopher Tor-
rence and Gilbert P. Compo (http://paos.colorado.edu/research/wavelets/) and also on some
modified versions of functions written by Bernard Cazelles and Mario Chavez; [7].

Apart from some computational choices and the correction of some typos, there are
three main differences: (1) the capacity of using an entire family of analyzing wavelets,
the GMWs, (2) the possibility of changing the wavelet parameters, allowing for greater
flexibility, and (3) different null hypothesis for testing significance.

A.1 Implementation details

When implementing the transforms, some choices have, naturally, to be made. We now
give a brief description of the options made in our programs. These can be modified, with
very little effort, by any user.
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� Normalization

The wavelets are normalized to have unit energy, i.e. we use formula (57) for the
normalizing constant, in the case of a GMW ψβ;γ , and formula (51), in the case of
the Morlet Wavelet.

� Fourier factor

The conversion of scales to frequencies is based on the energy frequency ωEψ , given by

(29), i.e. we use formula ω(s) =
ωEψ
s to convert scales to angular frequencies. This,

in turn, means that our Fourier factor, used to convert scales to Fourier periods, is
given by

Ff =
s

ωEψ
. (70)

� Formula for CWT

The implementation of the CWT (and, hence, also the XWT and the WCO) is based
on the use of formula (46), together with and inverse FFT.

� Scales

The scales used in the CWT (XWT, WCO) are chosen as fractional powers of 2, i.e.
they are of the type given by (47).

� COI

When implementing our algorithms, we take as decaying time to define the COI, the
quantity given by the radius of the wavelet (at each scale s`), i.e. we consider

t` = s`σt,

where σt is given by formula (19). But

t` = s`σt ⇐⇒ t` =
λ`
Ff
σt ⇐⇒ λ` =

Ff

σt
t`, (71)

where λ` denotes the Fourier period corresponding to scale s` and Ff is the Fourier
factor given by (70).

� Smoothing

The smoothing process involved in the coherency computations is done by convolution
with window functions in time and in frequency. The type and size of the window
can be selected by the user. Possible windows are: rectangular (box), triangular,
Hamming, Hanning, Blackman and Bartlett.
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� Significance tests

The tests of significance are always based on Monte Carlo simulations. The sim-
ulations use two different types of methods to construct surrogate series: (1) fit-
ting an ARMA(p, q) model and building new samples by bootstrap or (2) fitting an
ARMA(p, q) model and construct new samples by drawing errors from a Gaussian
distribution. In the first option, we use the very basic bootstrap technique described
in Section 2.1 of Berkowitz and Kilian [4] and Chatterjee [8]. In the second option,
the surrogates are constructed using the function ‘garchsim’ (univariate GARCH pro-
cess simulation) of the Econometrics Toolbox included in MatLab 2009. To fit the
ARMA(p, q) to the data, we make use of the function ‘garchfit’ of the same tool-
box. The user that does not have the Econometrics toolbox can perform significance
tests by choosing an ARMA(p, 0) model with bootstrap. In this case, the AR(p)
model is estimated by OLS and the code is self-contained and autonomous from the
Econometrics toolbox.

A.2 Software requirements

Our programs were written in Matlab 2009.b. However we were careful in writing it in
such a way that it is fully compatible with version 7. Some of our programs make use of
functions from the Matlab toolboxes Econometrics Toolbox, Signal Processing Toolbox and
Statistics Toolbox. This is always explicitly stated in the function and may, in some cases,
be very simply replaced by functions written by the user.

A.3 List of functions

The following functions are available.

1. Folder Auxiliary

� AROLS - AR model of a time series based on Ordinary Least Squares.

� FourierSpectrum - Parametric estimate of the Fourier Power Spectrum of a time
series, by fitting an ARMA process.

� GMWMeasures - Some measures associated with a given Generalized Morse Wavelet.

� MatrixMax - Local maxima of a matrix.

� ProcessMatrix - Pre-processing of columns of given matrix.

� SurrogateARMABoot - Surrogate series based on ARMA model and bootstrap.

� SurrogateARMAEcon - Surrogate series using Econometrics toolbox.

� WaveletSpectra - Wavelet transforms of all the columns of a given matrix.

2. Folder WaveletTransforms

� AWCO - Wavelet Coherency and Cross Wavelet Transform of two series.
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� AWCOOutput - Different quantities computed from a Wavelet Coherency.

� AWT - Analytic Wavelet Transform of given series.

� AWTOutput - Different quantities computed from a Wavelet Transform.
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