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Abstract

In the empirical literature on interest rate rules, central bank

gradualism (or monetary policy inertia) is typically modeled by

specifying an inertial Taylor rule with lagged policy rate. We in-

troduce an alternative specification which implies inertia in the

central bank’s adjustment of the operating target for the policy

rate. We find empirical evidence supporting the alternative spec-

ification against the standard specification. We will argue that,

unlike the standard specification, the proposed specification is

consistent with the low predictability of interest rates.
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1 Introduction

There is a conventional view that central banks adjust interest rates

gradually in response to macroeconomic developments. Indeed, the em-
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pirical evidence on the behavior of the central banks in the last two

decades has been summarized as an inertial Taylor (1993) rule, where

the nominal interest rate adjusts only partially to inflation and the out-

put gap, as there is an interest rate smoothing component.1

A typical rationale for gradualism is the concern for financial stabil-

ity.2 An alternative explanation is concern for the adverse reactions of

financial markets to frequent changes in the direction of movement of

short-term interest rates (see for example Goodfriend 1991).

Moreover, the optimality of central bank gradualism is supported by

several recent analyses of monetary policy. First, gradualism may be

optimal in presence of uncertainty about the structure of the macroeco-

nomic model, about the values of the parameters of the model, or about

measurement errors in contemporaneously reeased data.3 Second, the

linkage between future monetary policy and aggregate demand can be

exploited by central banks in order to stabilize the economy optimally.

This implies that in presence of forward-looking expectations on infla-

tion it may be optimal to adjust the interest rate with some inertia.4

Third, interest rate smoothing may emerge under a discretionary mon-

etary policy regime, when it may be desirable to delegate policy to a

1See for instance Clarida, Galì and Gertler (2000), who enphasize the empirical

importance of including a lagged interest rate in a monetary policy rule for the United

States. For a similar result for other industrial countries see Clarida, Galì and Gertler

(1998).
2Reviews on this literature are provided by Cukierman (1992), Goodhart (1996),

Walsh (2003), Sack and Wieland (2000).
3The importance of such uncertainties for gradualism is examined by Sack

(1998,2000), Startz (2003), Orphanides (2003), Rudebusch (2001), Wieland (1998),

among others.
4See Woodford (1999).
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central banker with an explicit interest rate smoothing objective.5

However, recently Rudebusch (2002) has challenged the conventional

wisdom on central banks gradualism (or monetary policy inertia). In

particular, by focusing on the apparent contradiction between interest

rate smoothing and the low predictability of policy rates, he argues that

monetary policy inertia is an illusion. He argues that given the large

and highly significant estimates of the coefficient of the lagged policy

rate found in empirical analyses, we should observe high predictability of

interest rates.6 This implies that empirical Taylor rules may be misspec-

ified and that the inertia found may be actually related to the presence

of serially correlated shocks faced by the central bank.7

Söderlind, Söderström and Vredin (2002) have found further evidence

against the inertial Taylor rule. They argue that a high coefficient of the

partial adjustment component is a necessary but not sufficient condition

for having a highly predictable interest rate. Actually the predictability

of the interest rate depends also on the other variables that enter the

Taylor rule, namely output and inflation. They show that, while it is

relatively easy to predict the variables that enter the Taylor rule, it is

very difficult to predict interest rates. This result might be due to an

5See Woodford (2003a). The previous two arguments for the optimality of mone-

tary inertia considered in the text do not presume a central bank’s loss function trad-

ing off objectives related to macroeconomic stability with an interest rate smoothing

objective (usually interpreted as a financial stability motive).
6In the empirical literature the estimated coefficient for the lagged policy rate is

ranging from .7 to .9. See Rudebusch (2002) for a review of the estimates found in

the literature.
7See also Lansing (2002) for a theorical support of the ‘illusion of monetary inertia’

hypothesis, based on real-time estimation of trend output.
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omitted variable problem in the Taylor rule, with the potentially omitted

variable being not easily predictable.

In his analysis, Rudebusch, using yield curve data, provides an in-

direct proof of the implausibility of the inertial Taylor rule. English,

Nelson and Sack (2003) show that it is possible to test directly the null

of serial correlation against the alternative of partial adjustment. They

find that it is not possible to reject the presence of both serial correlation

and partial adjustment.

In the present analysis we try to reconcile the empirical evidence on

monetary policy inertia with the low predictability of short-term inter-

est rates by examining an inertial Taylor rule, which is an alternative

to the one considered in the literature. In particular, we postulate a

different specification of the inertial component which implies inertia in

the central bank’s adjustment of the operating target for the interest

rate. We will argue that, for given coefficient of partial adjustment, our

alternative specification implies lower predictability of the interest rate

than that implied by the standard specification of the inertial Taylor

rule. In our empirical analysis we find support for the alternative speci-

fication against the standard specification. Moreover, in the alternative

specification, the estimated coefficient of partial adjustment is below 0.5,

which is lower than is usually found in the literature.

The structure of the presentation is the following. In section 2 we

consider a simple empirical macro-model, along the lines of Svensson

(1997), and derive the optimal interest rate rule for the central bank.

This rule in general looks rather complicated. Thus we specify a simple

inertial Taylor rule - with only three parameters - that might approxi-
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mate the optimal rule. Section 3 discusses our empirical findings based

on the alternative inertial Taylor rule. Section 4 will make some con-

cluding observations and address future research.

2 A simple framework

2.1 The model

Here we use a simple framework for examining the optimal interest rate

rule for a central bank, which is an extended version of the model used

by Svensson (1997).8 He argues that, even if there is no explicit role for

private agents’ expectations, the model has many similarities with more

elaborate models used by central banks.9

Consider the following model10

πt+1 = α1yt + (1− α2)πt + α2πt−1 + �t+1, (1)

and

yt+1 = β01yt − β2 (it −Etπt+1) + β3yt−1 + ηt+1, (2)

8In the litereature, Svensson’s (1997) model has been extended in several direc-

tions: for examining nominal income targeting (Ball 1999); for studying the im-

plications of monetary policy for the yield curve (Ellingsen and Söderström 2001;

Eijffinger, Schaling and Verhagen 2000); for examining model uncertainty, interest

rate smoothing and interest rate stabilization - i.e. for studying the optimality of a

more gradual adjustment of the monetary instrument (Svensson 1999). Moreover,

Rudebusch and Svensson (1999) provide empirical estimates for a model similar to

Svensson (1997) and use a calibrated version of the model in order to evaluate a large

number of interest rate rules.
9See for instance the discussions in Rudebusch and Svensson (1999) and Rude-

busch (2001).
10We have used the same notation as in Svensson (1997).
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where πt is the inflation rate, yt is the output gap, it is the nominal

repo rate, i.e. the monetary instrument of the central bank, and �t, ηt

are i.i.d. shocks.11 All the variables are considered as deviations from

their long-run average levels, which are normalized to zero for simplicity.

After substituting Etπt+1 with the expectation of expression (1), ex-

pression (2) becomes:

yt+1 = β1yt − β2it + β3yt−1 + β4πt + β5πt−1 + ηt+1, (3)

with

β1≡β01 + β2α1; (4)

β4≡β2 (1− α2) ;

β5≡β2α2.

The coefficients in (1) and (3) are all assumed to be positive, with 0 <

α2 < 1. Equations (1) and (3) coincide with those considered in Svensson

(1997) (equations 6.4 and 6.5 in his text) when α2 = β3 = 0.12 The

restriction that the sum of the lag coefficients of inflation in (1) equals 1

11See Svensson (1997) for the details on the model and in particular for the impli-

cations of substituting the long-term nominal rate with the repo rate.
12Contrary to Svensson we have assumed that the coefficient of one-period lagged

inflation in (1) is less than 1, instead of equal to 1. McCallum (1997) has shown that

when the coefficient is equal to 1 we may have problems of instability of nominal

income rules that would not arise if expectations of current or future inflation were

included in the model considered. See also Rudebusch (2002) and Jensen (2002)

for further analyses of the performance of nominal income rules for monetary policy

when a forward-looking price-setting behaviour is explicitly included in the analytical

framework.

6



is consistent with the empirical evidence.13 An important feature of this

model is the presence of lags in the transmission of monetary policy. In

particular, the repo rate affects output with a one-period lag (where one

period corresponds to one year), while affects inflation with a two-period

lag. This feature is broadly consistent with the "stylized facts" of the

impact of monetary policy on output and inflation.

Finally, monetary policy is conducted by a central bank with the

following period loss function

L (πt, yt) =
1

2

£
π2t + λy2t

¤
, (5)

where λ > 0 is the relative weight on output stabilization. The

intertemporal loss function is

Et

∞X
τ=t

δτ−tL (πτ , yτ) . (6)

The central bank minimizes the above intertemporal loss function by

choosing a sequence of current and future repo rates {iτ}∞τ=t.

2.2 Optimal interest rate rule

Before solving the optimization problem we introduce first a convenient

simplification for the choice variable. In the expression (3) of output the

choice of iτ affects yt+1, but yt, yt−1, πt and πt−1 are all predetermined.

Thus we can write

yt+1 = ∆t + ηt+1, (7)

13See for instance Rudebusch and Svensson (1999) for a test of this restriction in

a model similar to the one considered here.
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with

∆t ≡ β1yt − β2it + β3yt−1 + β4πt + β5πt−1. (8)

As observed above, the repo rate affects affects inflation with a two-

period lag. This can be seen by rewriting the expression (1) for inflation

in the following form

πt+2 = α1∆t + (1− α2)πt+1 + α2πt + α1ηt+1 + �t+2, (9)

where we have considered inflation at time t+2 and inserted expres-

sion (7). By means of dynamic programming, we can derive the optimal

rule as the solution to the following problem

V (Etπt+1, πt) = min
∆t

Et

½
1

2

£
π2t+1 + λy2t+1

¤
+ δV (Et+1πt+2, πt+1)

¾
,

(10)

subject to (7) and (9). The value function V (πt+1, πt)will be quadratic

and in the present case, where constant terms are absent, it can be ex-

pressed without loss of generality as

V (πt+1, πt) =
1

2
γ1π

2
t+1 + γ2πt+1πt +

1

2
γ3π

2
t + k, (11)

where the coeffcients γ1, γ2 and γ3 need to be determined. The

remaining constant k is a function of the variances of the shocks.

Here we have two state variables and one control variable. In gen-

eral, the optimization problem cannot be solved analytically by means

of dynamic programming if there is more than one state variable. In the
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simpler case with only one state variable, considered by Svensson, it is

possible to get an analytical solution for the optimization problem.

Nevertheless, we can make a qualitative assessment of the form of the

optimal rule. Svensson has shown that in the simpler case considered by

him the optimal rule takes the form of the Taylor (1993) rule

it = φ1πt + φ2yt,

with φ1 > 1 and φ2 > 0. What emerges in the present case?

The first order condition with respect to ∆t is given by

yt+1|t = −
α1δ

λ

¡
γ1πt+2|t + γ2πt+1|t

¢
,

where we have used (11).

The optimal interest rate can be derived by substituting (??) in (3)

and using the inflation equation (1) to yield

it=α2

∙
(1 + C)πt−1 +

β3
α2β2

yt−1

¸
+ (12)

(1− α2)

∙
(1 +A)πt +

µ
β1

(1− α2)β2
+B

¶
yt

¸
,

with

A≡ δα1
(γ1 + γ2) (1− α2) + γ1α

2
2

(1− α2)β2 (λ+ δα21γ1)
; (13)

B≡ δα21
γ1 (1− α2) + γ2

(1− α2)β2 (λ+ δα21γ1)
;

C≡ δα1
γ1 (1− α2) + γ2
β2 (λ+ δα21γ1)

.

In general, in a problem of this type, the optimal feedback rule can be

represented as a linear function of the state variables, here Etπt+1, and
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πt. So we could represent the rule for∆t as∆t = f1Etπt+1+f2πt. Since

Etπt+1 can be represented as a function of current values and the first

lag of the output gap and inflation, when we solve for the interest rate,

the policy rule also emerges as a linear function of the same variables.

It would be useful to be able to sign the parameters in the feedback rule

(13). Since the value function is a positive definite quadratic form, it

must be the case that γ1 > 0, γ3 > 0, and γ1γ3 − γ22 > 0, but it is not

possible to sign γ2. If the coefficients on the right hand side variables

in (12) are all positive, and if the ratios of coefficients on the current

variables ( and ) are the same as the ratios of coefficients on lagged

variables ( and ), then the policy rule may have the form of a moving

average of a simple Taylor rule. That is, (12) can be written as

it=α2 [µ3πt−1 + µ4yt−1] + (14)

(1− α2) [µ1πt + µ2yt] ,

with µ1 = (1 +A) , µ2 =
³

β1
(1−α2)β2

+B
´
, µ3 = (1 + C) , and µ4 =

β3
α2β2

.

If the pattern of coefficient were such that µ1/µ2 = µ3/µ4 then the

actual rule could be thought of as a moving average of a simple rule

it = µ1πt + µ2yt.

2.3 Simple rules

During the past decade, the research on monetary policy design has fo-

cused on simple rules - among which Taylor’s (1993) rule is a prominent

example - as opposed to more complicated or fully optimal rules.14 As

argued by Woodford (2003b, p. 507), a rationale for this choice can be

found in the greater transparency provided by simple rules, which may

14For a review of this literature see for example Williams (2003).
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increase central bankers’ accountability in terms of their commitment to

the given policy rule.15 Typically this literature has focused on simple

rules based on two or three parameters (and variables) which are opti-

mized for the given preferences and the given form of the rule assumed.

For example Rudebusch and Svensson (1999) estimate a model similar

to that presented here, with more lagged variables and an interest rate

smoothing argument added in the loss function. They derive numeri-

cally the optimal policy rule, which looks more complicated than ours.

Moreover they use the model to evaluate a large number of simple rules

for setting the interest rate.

Two main findings of this literature are that simple rules perform

nearly as well as fully optimal rules and that simple rules are more

robust than more complicated rules to model misspecification.

In this vein, we can simplify the optimal rule in a way that approx-

imates the behaviour of the optimal rule. In particular it is straight-

forward to see that the optimal rule (12) could be approximated by a

simple rule of the following form

it = ρit−1 + (1− ρ) it, (15)

with

it = µ1πt + µ2yt, (16)

and 0 < ρ < 1.

15See Svensson (2003) for a discussion of the problems associated to using judge-

ments in monetary policy based on simple instrument rules or targeting rules.
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In the empirical literature the standard inertial Taylor rule takes

instead the following form

it = ρit−1 + (1− ρ) it, (17)

with it equal to (16) or to a forward-looking version of (16) with

future expected inflation. The term it is usually interpreted as an oper-

ating target for the policy rate.

The crucial difference of (15) with respect to (17) is that the inertial

component is proportional to the lagged operating target, instead of the

lagged interest rate. Hence, our alternative specification of the inertial

policy rule implies that the central bank gradually adjusts the operating

target for the policy rate.16

In our framework, substituting the lagged operating target with the

lagged interest rate in the simple rule could improve the approximation

of the optimal rule only if we had the lagged interest rate in the optimal

rule. This only happens if we have an interest rate smoothing objective

in the central bank loss function.

By using a model with forward-looking private sector, Woodford

(2003a) has shown that it may be optimal to delegate monetary pol-

icy to a central bank that has an objective function with an interest rate

smoothing motive. This is an interesting result. However, while there

exist examples in the real world of institutional arrangements that pe-

nalize central banks for not achieving given inflation targets, there is less

evidence of central banks being penalized for interest rate changes. The

16See Woodford (2003b, p. 96) for a discussion of interest rate rules with partial

adjustment on lagged operating target.
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reference to a financial stability objective is very general and it is con-

sistent also with an interest rate targeting objective without necessarily

implying an interest rate smoothing objective.17 Thus, to presume, as

Woodford and others do, that central banks have preferences of this kind,

which are unlike those specified in social loss functions, requires an ex-

plicit reference to an interest smoothing objective in the Law concerning

central banks.

Sack (2000, pp. 230-231) provides a further argument against an

explicit interest rate smoothing objective:

“To describe this behaviour, which has been referred to as

gradualism, many empirical studies of monetary policy incorpo-

rate an explicit interest-rate smoothing incentive in the objective

function of the Fed. However, introducing this argument has

little justification beyond matching the data. Furthermore, the

above statistics provide evidence of gradualism only if the Fed

would otherwise choose a random-walk policy in the absence of

an interest-rate smoothing objective. Therefore, while establish-

ing that the funds rate is not a random walk, these statistics

do not necessarily provide evidence of gradualism in monetary

policy”.

Thus we can argue that it would be perfectly plausible to test empiri-

cally for alternative specifications of simple rules which do not necessarily

include the lagged interest rate, but provide as well some degree of iner-

tia reflecting the dynamic structure of the economy (and eventually the

uncertainty surrounding that structure).

17See for example Goodfriend (1987).
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3 Empirical evidence

3.1 Estimation of inflation and output equations

In order to gain some insights into the parameters of the inflation and

output equations used in the previous theoretical analysis we have first

estimated the following empirical model based on Rudebusch and Svens-

son (1999):

πt = κπ1πt−1 + κπ2yt−1 + κπ3πt−2 + ωt, (18)

and

yt = κy1yt−1 + κy2yt−2 + κy3
³eit−1 − eπt−1´+ ψt, (19)

where the variables were de-meaned prior to estimation. The data

used here are ex post revised quarterly data. Inflation is defined using

the GPD-chain weighted price index (Pt), with πt = 400·(lnPt−lnPt−1).

The output gap is defined as the percentage difference betweeen actual

real GDP (Qt) and potential output (Q∗) estimated by the Congressional

Budget Office. The interest rate it is the quarterly average of the Fed

Funds rate.18

In table 1 we report Ordinary Least Squares estimates of the above

two equations over the period 1961 Q1 - 2004 Q2, with robust stan-

dard errors for the inflation equation. Following Rudebusch and Svens-

son the equations were estimated individually. In the output equationeit = (1/4)P3
j=0 it−j and eπt = (1/4)P3

j=0 πt−j. The inflation equation is

18While real GDP and the GPD-chain weighted price index were taken from FRED

of the Federal Reserve of San Louis, the (effective) Fed Funds rate was taken from

Datastream.
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somewhat simpler compared to that estimated by Rudebusch and Svens-

son. According to the Wald test the null hypothesis that κπ3 = (1−κπ1)

has a p-value of .15, therefore we have imposed this restriction in the

estimation.

3.2 Findings on policy rules

We examine the two policy rules considered above. The standard inertial

Taylor rule

it = ρit−1 + (1− ρ) it + ξt, (20)

and the alternative inertial Taylor rule

it = ρit−1 + (1− ρ) it + ξt, (21)

with

it = µ0 + µπeπt + µyyt, (22)

and 0 < ρ < 1. ξt is an i.i.d. error term. Following Taylor (1993) and

Rudebusch (2002) the policy rate reacts to four-quarter inflation eπt.
As argued by Rudebusch (2002), the evidence on the near-observational

equivalence of partial adiustment and serially correlated shocks for mon-

etary policy rules provides a motivation for testing whether rules like (20)

and (21) are misspecified. In fact the omission of a persistent, serially

correlated variable that influences monetary policy could yield the spu-

rious appearance of partial adjustment in the estimated rule. Indirect

testing of these two alternative hypotheses, based on the evidence on

the low predictability of policy rates, leads him to the conclusion that
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monetary inertia is an illusion and the lagged interest rate is not a fun-

damental component of the U.S. policy rule. However English, Nelson

and Sack (2003) show that, by testing these two alternative hypotheses

directly in the estimation of the policy rule, both play an important role

in describing the behaviour of the federal funds rate.

Following English, Nelson and Sack (2003), our estimations are based

on re-specifications of rules (20) and (21) that allow for both partial

adjustment and serially correlated errors. We assume that the shock ξt

follows an AR(1) process:

ξt = θξt−1 + εt. (23)

It then follows that the combination of rule (20) with (23) yields the

following expression for the first difference of the interest rate:

∆it = (1− ρ)∆it − (1− ρ)(1− θ)(it−1 − it−1) + ρθ∆it−1 + εt. (24)

This expression corresponds to that used by English, Nelson and Sack

(2003) for distinguishing the two alternative hypotheses, monetary iner-

tia versus omission of serially correlated variables, directly in the esti-

mation of the policy rule. Similarly, the combination of rule (21) with

(23) yields the following expression for the first difference of the interest

rate:

∆it = (1− ρ)∆it − (1− θ)(it−1 − it−1) + ρθ∆it−1 + εt. (25)

Nonlinear Least Squares estimates of specifications (24) and (25)

are reported respectively in tables 2 and 3, for the period 1987 Q4 -
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2004 Q2, and for two subsamples of it. The point estimates of ρ and

θ are both highly significant for all rules, suggesting that both partial

adjustment and serially correlated errors are present. The coefficients on

the output gap and inflation are largely consistent with other estimates

from the literature, with a significant coefficient on the output gap and

a coefficient on inflation greater than one. Moreover, it is possible to

observe that both rules appear to fit the data relatively well.

Interestingly, the degree of inertia implied by the alternative inertial

Taylor rule is systematically lower than that implied by the standard

specification, with an estimated coefficient of partial adjustment ρ for

the whole sample of .60 against one of .77. Meanwhile, the coefficient θ

is systematically higher in the case of the alternative specification than

in the standard specification. However, we have not tested whether

these differences are significant statistically.

Thus, as in English, Nelson and Sack (2003), we find empirical evi-

dence supporting specifications (24) and (25) of the policy rules against

specifications (20) and (21). But the alternative specification features

a reduced importance of monetary inertia and a greater importance of

serially correlated variables compared to the standard specification.

In the literature there exists also empirical evidence supporting the

importance of forward-looking policy rules - see for instance Orphanides

(2001) and Clarida, Galì and Gertler (2000). Thus it might be useful to

compare our estimated backward-looking policy rules with the estimates

obtained from the standard specification of the operative target with

expectations of future inflation. In table 4 are reported Generalized

Method of Moments (GMM) estimates of rule (20) with (23) and for the
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case when

it = µ0 + µπEt−1eπt+4 +Et−1µyyt. (26)

The instruments chosen were four lags each of inflation, the funds rate

and the output gap. As it is possible to see from table 4, the goodness-

of-fit is not improved compared to the case of backward-looking policy

rules.

3.3 Testing for robustness

In order to check for the robustness of our findings we estimate specifi-

cations (24) and (25) based on real-time data, instead of ex post revised

data.19 The consideration of real-time data might be relevant in order

to account for the presence of measurement errors. In fact, we might

have measurement errors in the estimates presented in table 2 and 3 due

to the fact that they are based on data that were not available to the

Federal Reserve at the time of its policy decisions.20 The real-time mea-

sures of the output gap and inflation used are based the given quarter’s

releases of data for the previous quarter.21

In table 5 and 6 are reported Nonlinear Least Squares estimates of

specifications (24) and (25) for the period from 1987 Q4 to 2001 Q2. The

19For easing the comparison with the findings of English, Nelson and Sack (2003),

we have used the same real-time data considered in their work. We thank Brian sack

for having kindly provided us the data.
20See Orphanides (2001) for an analysis of the informational problems related with

the estimation of simple monetary policy rules. In particular he shows that estimates

derived from ex post revised data differ remarkably from estimates derived from real-

time data.
21The real-time data set is made available by the Federal Reserve Bank of Philadel-

phia.
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results obtained confirm the presence of both partial adjustment and se-

rially correlated errors in the estimated interest rate rules. However, like

the findings of Orphanides (2001), in the case of rule (24) the coefficient

of inflation falls below one and is not statistically different from zero.22

This is unfortunate! As Henderson and McKibbin (1993) and Clarida,

Galì and Gertler (2000) show, a coefficient on inflation greater than one

is required a value greater than one for stability in macroeconomic mod-

els with policy rules of this type.23

On the contrary in the case of rule (25) the coefficient of inflation

is statistically different from zero. This suggests that, on the basis of

real-time data, rule (24) is misspecified, while the correct specification

is more likely to be rule (25).

Notice that the coefficient of inflation in rule (25) is greater than

one only for the subsample 1987 Q4 - 1993 Q4, where the estimated

coefficient is equal to 1.04. The fact that the coefficient of inflation is

22In the working paper version of their analysis, of 2002, also English, Nelson and

Sack report a not significant coefficient for inflation in the standard inertial Taylor

rule in the estimates based on real-time data (see table 3 in their text).
23The principle that interest rate rules should respond more than one for one

to changes in inflation is called “Taylor principle”: see for instance Walsh (2003).

However, Bullard and Mitra (2002) and Woodford (2003b) have shown that in general

the necessary and sufficient condition required for stability may have a more complex

form than that expressed by the Taylor principle. In particular it is possible to

show that µπ > 1 is only a necessary condition for the determinacy of the rational

expectations equilibrium, and even values of 0 < µπ < 1 can be consistent with

stability. However, as argued by Woodford (2003b, p. 254) the Taylor principle

continues to be a crucial condition for determinacy if it is reformulated as: “[...] At

least in the long run, nominal interest rates should rise by more than the increase in

the inflation rate”.
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not greater than one for the period 1987 Q4 - 2001 Q2 could be due

to the possibility that the Federal Reserve is reacting to more timely

information than the lagged GDP deflator. Forecasts from surveys or

alternative indicators of inflation might be included in the information

set available for the policy maker. Anyway, the Wald test fails to reject

the null that the coefficient of inflation in rule (25) is equal to 1.04 also

for period 1987 Q4 - 2001 Q2.

4 Conclusions
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APPENDIX

The equation for inflation can be written as

πt+2 = α1∆t + (1− α2)πt+1 + α2πt + α1ηt+1 + �t+2, (27)

and this can be converted to a system of first order difference equations

so that it can be written as a standard dynamic programming problem.

The choice of ∆t is made at time t knowing πt, Et(πt+1), yt and so on.

So we write the equation as

Et+1(πt+2) = α1∆t + (1− α2)Et(πt+1) + α2πt + α1ηt+1 + (1− α2)�t+1

and we supplement the system with

πt+1 = Et(πt+1) + �t+1

then we have a first order system in the two variables Et(πt+1) and πt.

It can be written as

zt+1 = Azt +But + νt+1

where we have defined zt ≡
∙
Et(πt+1)

πt

¸
, ut ≡ [∆t] and νt+1 ≡

∙
α1ηt+1 + (1− α2)�t+1

�t+1

¸
and the parameter vectors and matrices are A =

∙
1− α2 α2
1 0

¸
, B =∙

α1
0

¸
.

The period loss function is

Lt = (1/2)(π
2
t + λy2t )

and we try to minimize Et

¡P∞
s=t δ

s−tLs

¢
by choosing a sequence of

∆t,∆t+1,∆t+2, .... So we can write the period loss function (for pe-

riod t+1) as

Lt+1 = (1/2)
¡
(Et(πt+1) + �t+1)

2 + λ(∆t + ηt+1)
2
¢
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In terms of expected values as of date t, we have

Et(Lt+1) = (1/2)
©
z0tRzt + u0tλut + (σ

2
� + λσ2η)

ª
Now the problem can be written in a standard form. We choose ∆t so

that

Vt(Et(πt+1, πt) = min
∆t

Et

©
z0tRzt + u0tλut + (σ

2
� + λσ2η) + δVt+1(Et+1(πt+2), πt+1)

ª
,

subject to the equation of motion of the system given above. The cost-

to-go function Vt(Et(πt+1, πt) has the form

Vt(Et(πt+1, πt) = z0tvtzt + kt

where kt is a constant (whose value depends on the variance terms). So

we can write the problem as

z0tvtzt+kt = min
ut

Et

©
z0tRzt + u0tλut + (σ

2
� + λσ2η) + δ(z0t+1vt+1zt+1 + kt+1)

ª
,

This is the standard textbook formulation of the dynamic programming

problem. The first order condition gives

Et [λut + δBvt+1zt+1] = 0

or

λut + δB0vt+1(Azt +But) = 0

hence the feedback rule

ut = −(λ+ δB0vt+1B)
−1δB0vt+1Azt

which is conventionally written as

ut = Ftzt
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with

Ft ≡ −(λ+ δB0vt+1B)
−1δB0vt+1A

Putting the feedback rule back into the expression for the cost-to-go

function above gives

vt = R+ F 0
tλFt + δ(A+BFt)

0vt+1(A+BFt)

In the infinite horizon case, assuming the system can be controlled and

we have convergence, vt = vt+1 = v, and

v = R+A0[δv − δvB(λ+B0δvB)−1B0δv]A

and

F ≡ −(λ+ δB0vB)−1δB0vA

What does all this imply for the interest rate rule? We have from

the above that

∆t = f1Et(πt+1) + f2πt

where F = [f1 f2 ]. Since the control variable ∆t is defined as

∆t ≡ β1yt − β2it + β3yt−1 + β4πt + β5πt−1

and since

Et(πt+1) = α1yt + (1− α2) πt + α2πt−1

the rule for the interest rate becomes

it =
β1 − f1α1

β2
yt +

β4 − f1(1− α2)− f2
β2

πt +
β3
β2

yt−1 +
f1α2 + β5

β2
πt−1
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Table 1 - Inflation and output equations with ex post revised data  

 

 Inflation  Output 

 
�
�1 

 
0.72 

(7.80) 

 
�y1 

 
1.19 

(16.52) 

�
�2 0.09 

(3.35) 
�y2 -0.27 

(-3.72) 

  �y3 -0.06 
(-2.12) 

    

2R  0.81 2R  0.91 

SE 1.08 SE 0.77 

 
Notes: Ordinary Least Squares estimates. T-statistics shown in parentheses. 2R  and 
standard errors (SE) of the residuals also are reported. For the inflation equation T-statistics 
are based on standard errors that have been corrected for heteroskedasticity and serial 
correlation using the method of Newey and West (1987). Variables were de-meaned prior 
to estimation. The sample period is 1961 Q1 – 2004 Q2.  
 
 



 
Table 2 - Standard inertial Taylor rule with ex post revised data 

 
 

1987 Q4 – 1993 Q4 1987 Q4 – 2001 Q2 1987 Q4 – 2004 Q2 

 

0�  

 
0.15 

(0.12) 

 
1.10 

(0.94) 

 
1.28 

(0.89) 

�
�  2.31 

(7.12) 
1.85 

(4.31) 
1.66 

(2.41) 

y�  0.92 
(5.61) 

0.77 
(3.94) 

0.94 
(3.49) 

� 0.51 
(7.58) 

0.61 
(7.34) 

0.72 
(6.49) 

� 0.34 
(2.09) 

0.80 
(5.52) 

0.77 
(5.41) 

    
2R  0.99 0.97 0.98 

SE 0.26 0.31 0.33 

 
Notes: Nonlinear Least Squares estimates. T-statistics shown in parentheses are based on 
standard errors that have been corrected for heteroskedasticity and serial correlation using 
the method of Newey and West (1987). 2R  and standard errors (SE) of the residuals are 
reported for the level of the funds rate. 
 



 
 
Table 3 -  Alternative inertial Taylor rule with ex post revised data 

 

 1987 Q4 – 1993 Q4 1987 Q4 – 2001 Q2 1987 Q4 – 2004 Q2 

 

0�  

 
0.41 

(0.41) 

 
1.70 

(1.07) 

 
-4.08 

(-0.17) 

�
�  2.15 

(9.69) 
1.40 

(5.04) 
1.10 

(3.50) 

y�  0.78 
(5.56) 

0.65 
(4.56) 

0.67 
(4.56) 

� 0.48 
(6.62) 

0.59 
(6.49) 

0.60 
(8.64) 

� 0.70 
(6.18) 

0.94 
(17.29) 

0.99 
(28.68) 

    
2R  0.99 0.96 0.98 

SE 0.28 0.35 0.36 

 
Notes: Nonlinear Least Squares estimates. T-statistics shown in parentheses are based on 
standard errors that have been corrected for heteroskedasticity and serial correlation using 
the method of Newey and West (1987). 2R  statistic and standard errors (SE) of the 
residuals are reported for the level of the funds rate. 
 
 



Table 4 – Forward-looking inertial Taylor rule with ex post revised data 
 

 
1987 Q4 – 1993 Q4 1987 Q4 – 2001 Q2 1987 Q4 – 2004 Q2 

 

0�  

 
-3.35 

(-1.28) 

 
0.64 

(0.50) 

 
-0.87 

(-0.55) 

�
�  2.57 

(3.51) 
2.16 

(4.16) 
2.58 

(3.83) 

y�  -0.30 
(-0.59) 

0.62 
(3.73) 

0.74 
(4.20) 

� 0.79 
(11.69) 

0.66 
(5.32) 

0.68 
(6.51) 

� 0.07 
(0.37) 

0.62 
(3.71) 

0.67 
(5.08) 

    
2R  0.94 0.95 0.97 

SE 0.60 0.37 0.38 

 
Notes: Generalized Method of Moments estimates. Instruments are four lags each of 
inflation, the funds rate, and the output gap. T-statistics shown in parentheses are based on 
standard errors that have been corrected for heteroskedasticity and serial correlation using 
the method of Newey and West (1987). 2R  and standard errors (SE) of the residuals are 
reported for the level of the funds rate. 
 



Table 5 - Standard inertial Taylor rule with real-time data 
 

 
1987 Q4 – 1993 Q4 1987 Q4 – 2001 Q2 

 

0�  

 
3.61 

(1.98) 

 
3.66 

(4.57) 

�
�  0.47 

(0.73) 
0.47 

(1.36) 

y�  0.95 
(3.50) 

0.64 
(1.90) 

� 0.67 
(3.95) 

0.65 
(2.71) 

� 0.26 
(1.63) 

0.73 
(2.17) 

   
2R  0.98 0.96 

SE 0.37 0.34 

 
Notes: Nonlinear Least Squares estimates. T-statistics shown in 
parentheses are based on standard errors that have been corrected for 
heteroskedasticity and serial correlation using the method of Newey 
and West (1987). 2R  and standard errors (SE) of the residuals are 
reported for the level of the funds rate. 



Table 6 - Alternative inertial Taylor rule with real-time data 
 

 
1987 Q4 – 1993 Q4 1987 Q4 – 2001 Q2 

 

0�  

 
2.05 

(2.21) 

 
2.81 

(1.65) 

�
�  1.04 

(4.17) 
0.71 

(3.92) 

y�  0.69 
(6.39) 

0.54 
(5.43) 

� 0.43 
(2.99) 

0.37 
(3.62) 

� 0.65 
(3.80) 

0.94 
(10.15) 

   
2R  0.97 0.95 

SE 0.41 0.38 

 
Notes: Nonlinear Least Squares estimates. T-statistics shown in 
parentheses are based on standard errors that have been corrected for 
heteroskedasticity and serial correlation using the method of Newey 
and West (1987). 2R  and standard errors (SE) of the residuals are 
reported for the level of the funds rate. 




