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Abstract

We develop a new automatically-computable test for supegemneity, using a variant of general-
to-specific modelling. Based on the recent developmentsiptiise saturation applied to marginal
models under the null that no impulses matter, we selectigmfisant impulses for testing in the
conditional. The approximate analytical non-centralitthe test is derived for a failure of invariance
and of weak exogeneity when there is a shift in the conditiomadel. Monte Carlo simulations
confirm the nominal significance levels under the null, anagraagainst the two alternatives.
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1 Introduction

In all areas of policy which involve regime shifts or struetubreaks in conditioning variables, super
exogeneity of the parameters of conditional models undangés in the distributions of conditioning
variables is of paramount importance. In models without@mporaneous conditioning variables, such
as vector autoregressions (VARS), invariance under suéis shequally relevant. Tests for super exo-
geneity and invariance have been proposed by Engle, HendrRhard (1983), Hendry (1988), Favero
(1989), Favero and Hendry (1992), Engle and Hendry (199rdelakis and Sola (1996), Jansen and
Terasvirta (1996) and Krolzig and Toro (2002), inter aliricsson and Irons (1994) overview the lit-
erature at the time of publication. Favero and Hendry (19Bajlding on Hendry (1988), considered
the impact of non-constant marginal processes on conditimedels, and concluded that location shifts
were essential for detecting violations attributable ®lthcas (1976) critique. Engle and Hendry (1993)
examined the impact on a conditional model of changes in theemts of the conditioning variables,
using a linear approximation: tests for super exogeneityewenstructed by replacing the unobservable
changing moments by proxies based on models of the processageg the conditioning variables,
including models based on ARCH processes (see Engle, 119&2¢by allowing for non-constant error
variances to capture changes in regimes. However, PsagatdakSola (1996) claim that such tests have
relatively low power for rejecting the Lucas critique. Jam@and Terasvirta (1996) propose self-exciting
threshold models for testing constancy in the conditionadleh as well as super exogeneity. Krolzig and
Toro (2002) developed super-exogeneity tests based ouegédank technique for co-breaking shown
by the presence of common deterministic shifts, and dematestthat their proposal dominated existing
tests (on co-breaking, see Clements and Hendry, 1999, andriiand Massmann, 2005). We suggest
new additions to this set of possible tests, show that tlegéction frequencies under the null are close
to their nominal significance levels, and examine their gageveperties for failures of super exogeneity
and invariance.

The ability to detect all outliers and shifts in a model udimg dummy saturation techniques proposed
by Hendry, Johansen and Santos (2004) opens the door toehiglass of automatically computable
super-exogeneity and invariance tests. Their approachsiattirate the marginal model (or system) with
impulse indicators (hamely, include an impulse for evergestsation, but entered in feasible subsets),



and retain all significant outcomes. They derive the prditghinder the null of falsely retaining im-
pulses for a location-scalkD process, and obtain the distribution of the estimated medrnvariance
after saturation. We extend that idea to test the relevamd¢ke conditional model of all the retained
impulses from the marginal models. As we show below, sucltehies the correct size under the null of
super exogeneity of the conditioning variables for the peters of the conditional model over a range
of sizes of the marginal model saturation tests. Moreovdras power to detect failures of super exo-
geneity and invariance when there are location shifts imtheginal models. Finally, it can be computed
automatically—that is without explicit user interventiocas occurs with (say) residual autocorrelation
tests—once the desired sizes of the marginal saturatioc@rditional super-exogeneity tests have been
specified.

Five conditions need to be satisfied for an automatic testipéisexogeneity and invariance. First,
the test should not requilex anteknowledge by the investigator of the timing, signs or magpes of
any breaks in the marginal processes of the conditioninigbi@s. The test proposed here uses impulse
saturation techniques on the marginal equations to deterthiese aspects. Secondly, the correct data
generation process for the marginal variables should red teebe known for the test to have the desired
rejection frequency under the null. That condition is $iiitshere when there are no unit roots (stochastic
trends) in any of the variables: we will investigate the galigation of the approach to unit-root non-
stationarity in due course. Thirdly, the conditional mostebuld not need to be over-identified under the
alternative of a failure of super exogeneity, as requireddsts in the class proposed by (say) Revankar
and Hartley (1973). Fourthly, the test must have power againy form of failure of super exogeneity
or invariance in the conditional model when there are locasihifts in some of the marginal processes.
Below, we establish the general forms of the non-centraltsameters of the proposed tests in the two
main cases. Finally, the test should be computable withdditianal user intervention. That is true of
the impulse saturation test based on PcGets, although #seyptecise form of the test procedure is not
implemented in any released verston.

The structure of the paper is as follows. Section 2 consislgper exogeneity in a regression context
to elucidate the testable hypotheses which it entails. Nextion 3 discusses the three different ways in
which super exogeneity can fail, and how each could be teStection 4 describes the impulse saturation
tests developed by Hendst al. (2004), and how these can be extended to test super exoganelit
invariance. Section 5 provides analytic and Monte Carla@vwte on the null rejection frequency of
the proposed procedure. Section 6 considers the power difshstage to determine the location shifts
in the marginal processes. Then section 7 provides detaietytic derivations for three multivariate
examples of super exogeneity failures, namely a failureedkiexogeneity under non-constant marginal
processes; a failure of invariance of the conditional mpaeameters to shifts in those of the marginal
distributions; and a failure of weak exogeneity with constaarginal processes, which is a case where
the proposed tests may have little power. Section 8 investiga co-breaking based saturation test which
builds on Krolzig and Toro (2002) and Hendry and Massmanf%20Section 9 investigates the powers
of the proposed tests in an extensive set of Monte Carlo ewrpats related to the analysis in section 7
for a bivariate DGP. Section 10 describes similar Monte €experiments witlh = 3 variables. Section
11 concludes.

IPcGets is an Ox Package (see Doornik, 2001, and Hendry anzidirb999), designed for general to specific modelling.



2 Super exogeneity in aregression context

Consider the sequentially factorized joint data genemagicocess (DGP) of an-dimensional vector
process{x; }:

T
H DX (Xt | Xt—17 0) = H Dy|z (}’t | Ztyxt—la d)l) DZ (Zt | Xt—h ¢2) (l)

t=1 t=1

wherex; = (y; : z;) and¢ = (¢} : ¢>’2)' = f (0) € R*. The parameters of the andz processes need
to be variation free for, to be weakly exogenous for the parameters of integest h (¢,), but that
does not rule out the possibility that may change it, is changed. Super exogeneity augments weak
exogeneity with such parameter invariance in the conditiomodel.

WhenD, (-) is the multivariate normal, we can express (1) as the untondl model:

Yt ~ 1IN, K1t ’ O11,t 0"12,t )
Z Mo ¢ o12¢ ooy

where i+ and iy, are possibly functions oX;_;. To define the parameters of interest, we let the
economic theory formulation entail:

pie = po + B 1o )

whereg is the primary parameter of interest. The Lucas (1976)quréiexplicitly considers a model
where expectations (the latent decision variables givenhbyu, ;) are incorrectly modelled by the
outcomesgz;. From (2) and (3):

Elye | ze] = pg+ 0',12,t92721,t (z¢ — o)
= fpo+ (ﬁ/ - ‘7/12,t92_21,t) Moy + ‘7/12,t92_21,tzt
= Mo+ 71+ ’7’2,tzt (4)

1 / " . .
wherev,, = o, 25, andvi; = (8 —~s;) Me,. The conditional variance is; = o114 —
0'/127t92_21t0'21’t. Thus, the parameters of the conditional and marginal dessespectively are:

¢1,t = (MO YLt Yot W?) and ¢2,t = (NQ,t : 922,t) .
When (4) is specified as the regression modetferl,... T
yi = po + B'z¢ + & where ¢ ~ IN [0, w?] (5)

four conditions must be satisfied fey to be super exogenous f()ﬁ,uﬂ) (see e.g., Engle and Hendry,
1993):

(@) v2. = 772 Is constantt;
(b) B =12

(c) w? = w? is constant/t;
(d) ¢, is invariant toC?2.



Condition (a) requires thair’th;Ql,t is constant over time, which could occur because the two
components move in tandem through being connected’llgy = 7599+, as well as because tlg;
happened not to change over the sample. Condition (b) theaiethatz, is weakly exogenous for a
constant3d. Together, (a)+(b) also entail that ; = 0 and hence the conditional expectation in (4) is
independent ofi, ;. Condition (c) then entails in turn that; ; — 0’127t92‘2{t021¢ =011+t~ QB =
w? is constant. Finally, in (d);?2 is a class of interventions changing the marginal procesmpeters
¢, SO (d) requires no cross links between the conditional aatyimal parameters. When the four
conditions (a)—(d) are satisfied, then:

Elye | 2] = po + Bz, (6)
in which casez; is super exogenous f@t in this model. That requires in turn:
o4 = B'Qao s Vit (7)

The necessary condition (7) requires that the means in €nserrelated by the same paramegeas
the covariances |, ; are with the varianceQy» ;. Under super exogeneity, the joint density is:

Y ) N o + IB,HQ,t w?+ B'Q92.8 'Ry )
Z " I”’Q,t ’ 922,15/3 QZ?,t ’

so the conditional-marginal factorization is:

Yt | Zy Mo + ,Blzt w? o’
~ IN,, , , 9

Consequently, under super exogeneity, the paramgigrs €22, ;) can change in the marginal model:

z¢ ~ INp_1 [po 4, Qoo (10)

without altering the parameters of (5). Deterministicisbo-breaking will occur in (8) agl : ') x;
does not depend op, ;. Conversely, ifz; is not super exogenous fgt, then changes in (10) should
affect (5).

3 Failures of super exogeneity

Super exogeneity may fail for any of three reasons:

(i) z; is not weakly exogenous f@#, in which case the coefficient in a regressionypbn z; will not
coincide withg;
(i) the regression coefficient is not constant;
(iii) A is not invariant to changes &f2.

From (4), wherg, is not super exogenous fgrbut (3) holds:
Elye | ze] = pig+ Ullz,tﬂgzl,t (2 — H2,t)

po + B’z + (V/Q,t - /3/) (Zt - Nz,t)
= po+ 0Bz + (vy, —B') vau (11)



wherevy, is the error on the marginal model (10):
Zt = Moy + Vo where Vo~ IN,_1 [0, Qgg,t] .

Modelling i1, , by lagged values af;, to approximate the sequential factorization, yields tngnaented
VAR:

S
Zy = T + Z Hth_j + Vot where Vo~ |Nn_1 [0, Qggyt] . (12)
j=1
The introduction reviewed the currently available testsféo super exogeneity. The next section pro-
poses new tests for super exogeneity based on impulse tgatuaéter briefly reviewing that procedure
as applied to the marginal process.

4 Impulse saturation tests

A key recent development is that of testing for non-constamg adding a complete set of impulse
indicators{l{t},t =1,... ,T} to a marginal model: see Hendgt al. (2004). Using a general-to-
specific procedure, those authors analytically estakismull distribution of the estimator of the mean
in a location-scaléID distribution after adding” impulse indicators when the sample siz&'isA two-
step process is investigated, where half the indicatoradded, and all significant indicators recorded,
then the other half examined, and finally the two retained seindicators are combined. The average
retention rate of impulse indicators under the nutki8 when the significance level of an individual test
is set atw, so fora = 0.01, for example,0.017 indicators will be retained. Moreover, Hendey al.
(2004) show by simulation that other splits, such as reardehe impulses, or using three splits of size
T'/3, do not affect the retention rate under the null, or the satioh-based distribution of the estimated
mean.

This procedure can be applied to the marginal models for ditetige super-exogenous conditioning
variables. First, the associated significant dummies imtheginal processes are recorded. Secondly,
those which are retained are tested as an added variableteet¢onditional model. Specifically, after
the first stage whem impulse indicators are retained, a marginal model like (2 been extended to:

zy = o + Z Ix ; + Z Pion Lit=t;} + Vo, (13)
j=1 i=1
where the coefficients of the significant impulses are dehpte,, to emphasize their dependence on
the significance level; used in the marginal model. As just noted, this test has tpeopgpiate null
rejection frequency.

There is an important difference between outlier detectidrich does just that, and impulse satura-
tion which will detect outliers, but may also reveal othdwattare hidden by being ‘picked up’ incorrectly
by other variables. Figure 1 illustrates for a mean shift tieamid-sample, where no outliers, as defined
by [u| > 20 (say), are detected, but 40 dummies are significant in the®approach (for an alternative
method of tackling such problems, see Sanchez and Pe@a).20

The second stage is to add theretained impulses to the conditional model, yielding:

ye= 10+ B2+ Y Tial{i—t,} + € (14)
i=1
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Figurel Absence of outliers despite a break.

and conduct arF-test for the significance ofry q, ... 7m.q,) at levelas. Under the null of super
exogeneity, thé&-test of the joint significance of the impulse indicators in the conditional model should
have an approximatE-distribution and thereby allow an appropriately sized:tesction 5 derives the
null distribution and presents Monte Carlo evidence omniitalssample relevance. Under the alternative,
the test will have power in a variety of situations discusisesection 7 below. Crucially, such a test can
be completely automated, bringing super exogeneity irggourview of hypotheses about a model that
can be as easily tested as (say) residual autocorrelatianitively, if super exogeneity is invalid, so
3 # 0./12,t92721,t in (11), then the impact of the largest values of the ersors on the conditional
model should be the easiest to detect, noting that the signifimpulses in (13) capture the outliers not
accounted for by the regressor variables used.

A key feature of such a test is that the null rejection freqyeof super exogeneity by this-test in
the conditional model should not depend on the significaecel la;, set for each individual test in the
marginal model. Monte Carlo evidence presented in sectibsipports that contention. Thus, the main
consideration for choosing; is power against reasonable alternatives to super exdgeieb large a
value of«; will lead to anF-test with large degrees of freedom; too small will lead tw,fer even no,
impulses being retained from the marginal models. For exanagth four regressors aril = 100 then
a1 = 0.01 would yield four impulses in general, whereas= 0.05 would provide20.

Following Hendry and Santos (2005), a variant of the testif),(discussed in more detail below,
which could have different power characteristics, is to boma them impulses detected in all the equa-

tions of (13) into an index:

m n—
1= Do Lit—t;y Whered, o, => ;i (15)
=1 | =



and test the null op; = 0 in:
ye = po + Bz + o101 + €. (16)

This provides an alternative scalar test viith-n — 1 degrees of freedom, which should be approximately
distributed ag under the null of super exogeneity. In general, there shbaldhany fewer degrees of
freedom for such a test; the cost of the imposed restricitiat the implicit null must be larger. Indeed,
we show below that there are cases where its power would helwhbe dominated by thetest. Also,

for testing a failure of invariance, the indices must beretéed withz; as in:

m n—1

Lot = Z Zﬁj,z‘,alzj,tl{tﬂi} (17)

i=1 j=1

and then test for the null @f; = 2 = 0in:

Yr = po + B'ze + pri1g + pator + € (18)

using a 2-degrees-of-freeddmtest. By focusing on the empirically detected departungbé marginal
process, such tests should have power under the alternatlew, we derive their large sample non-
centralities in three central cases.

Alternatively, if some interest resides in which of thg; is responsible for any failure of super
exogeneity, then a vector test of the form in (19) could be& usdich might have more or fewer degrees
of freedom than the correspondifgtest in (14):

12,1t

L2.2.t o —~

L2y = i where iz ;1 = Z Pjicn ZitL{t=t;} (19)
: i=1

L2n—1.t

with m; being the number of retailed impulses in the marginal mooiet f;.

5 Thenull rgection frequency of the super-exogeneity test

Reconsider the earlier DGP:

< Yt ) ~N, < K1t >’< 011 0/12 ) (20)
Zt Moy o012 X
where:
Zy = Moyt Vay (21)

and:

v~ Np_1[0,399]. (22)
Then:

Y=+ e+ v (23)

with ¥ = 2521012 SO:
Et | Vi~ N [0,0'11 — 0'/12227210'12] . (24)



Under the null of super exogeneity, from (57):
Elye | 2] = po + B’z (25)
with:
Yo = po + Bz + & (26)
where:
fine = o + B’y and g = Ty o =7.
Thus, even though thg process is non-constant, the linear relation betwg@mdz, in (25) is constant.

Consequently, from (26), for anf x (n — 1) selection matrixS with £ < (n — 1) of rank & having
elements that are zero except for unity in a different lazain each column:

Elye | 2] = po + B'z + 0'Svay = po + 'z + 0'Spsy (27)
s0:
Yo = pio + B'ze + 0'Sva; + &4 (28)

The errors, or components pf, ;, from (21) will have zero population components when addg@®).
Tests of the significance &v,; or Su,, in (28) should reject at their nominal significance level. In
particular, selecting which components to add by analyfivgmarginal process should not alter this
argument.

Consider the following baseline econometric modelZor

zt = Pd; + va, (29)

whered; is a set of impulse indicator variables with:

R T -1,
o= (Z dtd2> (Z dtv%) . (30)
t=1 t=1

Suppose that each of the impulses is retained in the ecoriommaidel for the marginal process when:
t‘%i,j
wherec,, is chosen according to a given significance level Now, consider the econometric model
for y.|z, as in (28). Conditioning om; implies taking thez;s as fixed, and hence thwe ;s. Thus, the
conditional econometric model remains:

> Coy (32)

Ely: | z) = po + B'ze + 8'dy = po + B'zy. (32)

Given a significance levels, indicators will be retained in the conditional econoneetriodel, given
that they are retained in the marginal if:
‘tgi‘ > Cay- (33)

The probability of retaining the indicator in the conditans:

> cm) =Pr (‘tgi‘ > caz) = (34)

since (31) holds. Moreover, this results only depends ositirgficance levet,, used on the conditional
model and not oy .

Pr (‘t&‘ > Cay ‘ ‘tai’j
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5.1 Monte Carlo evidence on the null regjection frequency

In these Monte Carlo experiments, super exogeneity holdeeasull, and we consider three settings
for the marginal process: where there are no break$.ih.1; a variance change #.1.2; and a mean
shift in §5.1.3. In each case, the baseline DGP is a bivariate systeomwén be expressed as (see e.g.,

Hendry, 1995):
n 2 21 10
(2 )ml()- (0 %)

which in turn impliess = 2 = v andw? = 1, the parameters of interest in the conditional econometric
model.

The aim of the Monte Carlo experiments is to establish therajdction frequencies of the extended
super-exogeneity tests, and ascertain their dependdrargy, ion the nominal significance level for im-
pulse retention in the marginal process. Thus, impulsea#n of the marginal model and retention of
the relevant indicators should not require us to changeritieat values used to test such indicators in
the conditional model. If so, pre-searching for the reléwaies at which shifts might have occurred in
the marginal, does not affect testing for associated shitse conditional.

We consider a constant DGP and two DGPs with changes irthprocess, all under the null
of super exogeneity, where invariance and weak exogeneity refore and after the change in the
marginal process. For the baseline DGP in (35), the paramefethe conditional model;|z; are
1+ = (71.45724w7), wherevy;; = 0 by virtue of weak exogeneity, angh; = 0127t02‘217t with
wi = o114 — a%ltcrngt = landvy; = 2 = (3. The parameters of the marginal model are
¢21 = (p24;022,). Changes in the marginal process always occur at fime: 81, implying & = 20.
We examine several significance levels for testing andmeigiimpulses in the saturated location-scale
model for the marginal, and also allow the significance ke¥et testing in the conditional to vary. The
impulse saturation uses a partition®f2 with M/ = 10000 replications conducted in the Monte Carlo
experiments.

5.1.1 Constant marginal under the null of super exogeneity

We use the simplest marginal model, defined by:
ze =144 (36)

wherev, ~ IN [0, 5]. This econometric model mimics the location-scale modelyasis in Hendryet al.
(2004). As a sample split af /2 is used, the econometric models for the marginal are:

T/2
zZt = M2 + Z Vely + 6 (37)
t=1
and:
T
zZ¢ = p2 + Z Pily + & (38)
t=T/2+1

LetS,, denote the set of significant dummies in the econometric l¢d@&) and (38). Our test strategy
entails introducing these dummies into the econometricehfmd the conditional. Hence, the second
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stage of the extended test is to estimate:

ye=Bx+ Y dily, +u (39)
i€Sa,

and to test the joint significance of the dummies definedpyin the conditional model. Averaging
across thel/ replications, we obtain the average relative frequency wihich a block of indicators
included in (39), due to belonging t},,, is retained in the conditional. Given that we have imposed
super exogeneity by design, we expect such a null rejectiequéncy to be close to the postulated
nominal significance level. This would constitute evidetitat no distortion in selection of indicators
was introduced by dummy saturation in the marginal modébficdd by testing for joint significance of
the retained dummies of the marginal in the conditional.

However, the marginal tests should not use too low a proibalof retaining impulses, or else the
conditional must automatically have a zero null rejectimgfiency. Atl' = 50 anda; = 0.01, about
one impulse per two trials will be retained, so half the timejmpulses will be retained; on the other half
of the trials, aboutyw,; will be retained, so roughlg.5qa, will be found overall, as simulation confirms
(unconditional rejection frequencies were recorded thhout).

Figure 2 reports the empirical rejection frequencies ofribk in the conditional model when the
significant dummies from the marginal are added as in (39).béfsre, oy represents the nominal
significance level used for thetests on each individual indicator in the marginal modeti@ontal axis),
anda, represents the significance level for fh@ndt tests on the retained dummies in the conditional
(vertical axis).

o) F-test a, t—test
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Figure2 Null rejection frequencies df andt tests in conditional as; varies for constant marginal.

The simulated null rejection frequencies and the nomimgadi§cance levels in the conditional model
are close for thd- andt-tests so long a8’ x a3 > 3. Then, there is no distortion in the number of
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retained dummies for either test in the conditional underrthll, whent-tests are used in the marginal
model. However, constant marginal processes are the ‘wass’: the next two sections consider mean
and variance changes where many outliers are retainedesoahe fewer cases of zero impulses to enter
in the conditional leading to constam} asa; varies.

5.1.2 Changesin thevariance of z; under the null of super exogeneity

The DGP forT > Ty = 0.8T is given by:

i 2 1+200 100
()= ](0)-( 5)

S0o2, is multiplied by a positive scalat, whereo,; adjusts accordingly. Then, the ney, is such

that: .
« O—TQ, 10
Y= =g = =2=0. (41)

3 *
092.¢

Hence, the change ip, , induced by a change im, ; does not cause a changeq;. Also, v =
(B = y2,t) o, = 0 and, sincery; , = 1 + 200:

2
1(2)83 =w=1 (42)
Thus, in this class of DGPsp, , is invariant to changes ig,, induced by changes im ;. Since
weak exogeneity and invariance hold, super exogeneityshetwithe null distributions of the tests should
remain as in subsection 5.1.1.

However, the impulse saturation test has power to deteatati@nce shift in the marginal: this was
presaged in Hendry and Santos (2005), who showed that imgutemies could be used to discriminate
between mixtures of distributions in marginal processes, the variance shift here is simply a time-
ordered example thereof. Thus, unlike the previous casetentnlyaT" impulses would be retained on
average, the number retained depends on the power of thdsingaturation test in the marginal. We
investigate that power in subsection 6.2.

Figure 3 reports the empirical rejection frequencies ofiikkin the conditional model when testing
the significance of the dummies selected from the marginghim s represents the significance level
for the F andt tests on the retained dummies in the conditional (vertigad)aand the horizontal axis
corresponds to the three valuesiof (2; 5; 10) for oy = 2.5% throughout.

W?* = Uﬁt - (UTQ,t)2 (Ugu)_l =1+200 —

Both theF andt tests have appropriate null rejection frequenciesfor- 100, even when the
variance of the marginal process changes markedly, butightly undersized ai” = 50 for small shifts
when sometimes no impulses may be retained. Neither teshfaged between variance changes in the
marginal and failure of super exogeneity, when the null fiolthe next sub-section assesses empirical
rejection frequencies when mean shifts occur in the malrgirgess.

5.1.3 Changesin the mean of z; under the null of super exogeneity

We modify the baseline DGP (35) to:

Yt B0, 21 10
()l (5 ) (0 %)
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Figure 3 Null rejection frequencies df andt tests in conditional ag; varies for a variance shift in
the marginal.

whereé = 1 until ¢ > T; = 0.8T whend € R, in both cases withlf = 2. Super exogeneity holds
before and after the level shift. We assume that the varianeariance matrix remains the same before
and after the shift, but it could be allowed to change as wetlyided the values matched conditions for
super exogeneity.

We consider rather extreme cases of level shifts where threrduwunconditional mean af. is mul-
tiplied by factors of6 = 2, 6 = 10 up tod = 100. Figure 4 reports the empirical rejection frequencies
where the haorizontal axis corresponds to these three vafuesgain fora; = 2.5% throughout.

In this extreme scenario, whé&n > 100 the empirical rejection frequencies are never more than two
tenths of a percentage point away from the nominal signifiedevels postulated. Both tests do well for
all larger sample sizes in failing to spuriously reject th#f of super exogeneity when the null is true,
but as before are slightly undersizedZat= 50 for small shifts, when sometimes no impulses may be
retained.

One might intuitively think that the length of the break neastas far as spurious rejection of super
exogeneity is concerned. An experiment not reported heseate that is not the case: everdii%
of the sample was contaminated with a level shift in the nmaigof 6 = 100, the empirical rejection
frequencies are, even at a loose nominal significand®%fin the conditional 9.88% when the block
F- test is used, anfl. 74% when the index test is used.

Overall, we conclude that the new tests have appropriateejattion frequencies for both constant
and changing marginal processes, so turn to their abiligetect failures of exogeneity. This is a two-
stage process: fist detect shifts in the marginal, then usetto detect shifts in the conditional. We now
consider the properties of the first stage.
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Figure4 Null rejection frequencies df andt tests in conditional ag; varies for a mean shift in the
marginal.

6 Powers at stage 1

We consider the powers at stage 1 for both the mean shift @nebttiance change, in that order.

6.1 Detecting the mean shift in the marginal

The powers at the second stage conditional on knowing treklatates in the marginal, and hence cor-
rectly retaining every dummy, are easily calculated, buitawly be accurate for large magnitude breaks,
parameterized below by, when the saturation approach locates all, and only, tiesast impulses. For
smaller values ol\, fewer impulses will be detected in the marginal, and indaé#tiough the null rejec-
tion frequency of the test does not dependgnthe power will, suggesting a loosei. Unfortunately,
that in turn could lead to retaining spurious dummies (alt@sver thana, 77 as a location shift lowers
the null rejection frequency in the marginal: see Hergtrgl., 2004).

The power to retain each dummy in each marginal model givéis simplest form by:

Zjt = Z pi,j,al{t:ti} + U;,j,tu (44)
i€Sa,

when the marginal process is (45), namely:
zjt = Nilpsy + 02,50 (45)
depends on the probability of rejecting the null for the atsed estimated coefficient in (44):

~ _ . *
p’i,j,Ol - A] + v27j’ti'
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The properties of such impulse indicators are discusse@imuFy and Santos (2005). Here\d®, , | =

UQQJZ

l/éi Nel Aj
E [ty 0=0(Wra)] =B | 2| ~ —L= =14na (46)
[ Pi,g, ] @ m

(say).

Whenw, ;¢ is normal, the power could be computed directly from ttdistribution. However, we
compute the power function here and below using an appraxim#o t,%i_j .—o by a chi-squared with
degree of freedom:

a0 (Pha) ~ X1 (¥R0) - (47)
Next, we relate that non-centrgF distribution to a centra}? using (see e.g., Hendry, 1995):
X1 (¥Ra) = i (0) (48)
such that fork = 1: b 202 b
h:Twi’: andm:T’a. (49)

Finally, the power function of thg? <¢§,a) test in (47) is approximated by:

p [tﬁmzo (¥3.0) > Cay | Hl] ~ P [\ (430) > Cay | Hi] =P [x% (0) > hlea,] . (50)

For non-integer values ah, a weighted average of the neighbouring integer valuesad.u$\s an
example, when), , = 4 for ¢,, = 3.84, thenh = 33/17 ~ 1.94 andm = 8.76 (taking the nearest
integer values as 8 and 9 with weights 0.24 and 0.76) yiél%i%_’j’a:o (16) > 3.84} ~ (.99, as against
the exact-distribution outcome 00.975. When)\; = d, /o2, ;, as in the experiments reported below,
Y3 o = d° and so:

142 m= o
Ford =1, 2,2.5, 3 and4 atc,, = 3.84 we have:
017 d=1
0.50 d=2
pg =P [t%m.’a (d2) > cal] ~ 071 d=25
0.86 d=3
0.99 d=4

so the power is low ai = 1 (the exact-distribution outcome fod = 1 is 0.16), but has risen markedly
by d = 3. Viewing these powers as the probabiljgy of retaining a relevant dummy when testing the
marginal model, then approximatgbyk relevant dummies will be retained for testing in the corodiéil
model, attentuating the non-centrality. , in (70) below relative to the known break-dates’ case.
Similarly, retention of irrelevant impulses, namely tha@sgresponding to non-break related shocks
in the marginal process, will also lower power relative toking the break dates. For thetest, that loss
will merely be an increase in its degrees-of-freedom, inutttle power reduction. However, the index
will include such values at their estimated outcomes solesk more power. These effects also differ at
a given non-centrality of the test statistics by what induttee super-exogeneity failure: specifically, a
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larger break in the marginal with a smaller violation of thél will generally lead to a closer match of
the non-null rejection frequency and the optimum for knowealx dates, since few irrelevant impulses
will be retained when there is a large break.

6.2 Detecting the variance shift in the marginal

We consider a setting where the variance shift 1 occurs within one half, say at observation > 7'/2
so that:
=1+ (1{t<T1} + \/51{th1}) v (51)

The maximum feasible power would be from detecting and engethe set ofl’ — 77 + 1 impulses
ly>7,y each of which would then equa@l{tzﬂ}vt to be judged against a baseline variance pf

VOlsmyu

teery = —
v

which has a non-centrality aff , = 6. Approximating by a centratj (wgm) as before:

P [t?tle} (wg,al) > Cay | Hl] ~ P [X% (@bg,al) > Cay | Hl] ~ P [X72n 0) > h_lcm] (52)

for: )
1+ 207 (1 + wﬁ,al)
=T T T 22
0,011 0,01

Thus, fory? = (2; 5; 10), power will be about (25%, 60%, 90%) respectivelyyat= 0.05.
0,01

(53)

7 Three super exogeneity failures

In this section, we derive explicit outcomes for three foroisuper exogeneity failure, namely weak
exogeneity failure when the marginal process is non-cahgtesection 7.1; invariance failure in section
7.2; and weak exogeneity failure when the marginal processernstant in section 7.3. In each case, we
obtain the non-centralities and approximate powers ofébistfor a known break, then modify these in
light of the stage 1 pre-test for indicators. Section 9 reptire simulation outcomes.

7.1 Weak exogeneity failure under non-constancy

Consider the normally-distributed x 1 vector random variable; = (y; : z,)’ where the conditional
expectation ofy is:

Elye | 2] = g + 01935 (2 — poy) = pae + (20 — poy) (54)
with conditional variance:
E | (e — Elwnlzd])’ | ze] = (o1 — 015 012)

where the parameter of interest@dn the theoretical model (ignoring intercepts for simpiicdf expo-
sition):
pie = B'pg (55)
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Then:
ye =Bz + (v = B) (2t — poy) + € (56)

wheree; = y; — E[y|z¢] given (55), scE[e;|z;] = 0. Such a model is a possible example of the Lucas
critique where the agents’ behavioural rule depends[eyj as in (55), whereas the econometric equation

usesz;, leading to (56).
/6,/1’2,75 o1 Oy
Moy )\ o012 T

The joint distribution ofx; is:
To complete the model, we postulate an explicit breakingcgss for{z;} which will induce a

( vt > ~N, (57)
Z
violation in super, as well as weak, exogeneity throggi 3, wherey = 2521012, namely:

Z; = )‘1{t>T1} + Vo (58)

SOE[z] = Aly>m} = ma,- In general, there could be breaks in the different margimatesses at
different times, but little additional insight is gleanedeo the one-off break in (58) which may affect
one or morez;S. The relevant moments of the joint process are:

Elz:] = Al{t>T1}
Ely:] = B'Elz] =B'Npomy
E[az] = B[z +var) Mpsmyy +v20)] = AWl + o
Elzey] = E[(Algsmy+vae) (B'Alpsny +vie)] = A (B'A) Lysny + By

If the break is not handled, the fitted model is the regression
Yr = Ko + K1 Z¢ 4 uy (59)

whereE[z,u;] = 0. Then, in (59), lettindT — T1) /T = r:

[0 = et )] (o)
K1 ~ |& \ Elz] Elzz] — \ Elzwi
(1 r\ - rB'A
Tl AN+ 3y rA (B'A) + ooy
()
3 I

d, =H, 'S (8-7). (60)

where:

Consequently:
Y = Ko + K 2e +up = rNd, + (B — d,) z; +us = Bz — d (zs — ) + (61)

showing that the coefficients are a function of the proparti@f the sample affected by the shift in the
marginal process. Recursive estimation and testing fostamcy could reveal that problem, but here we
consider the extent to which adding the impulse indicatmmfthe marginal process will also do so.
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Adding the impulse dummies to the marginal model at best avgidld:

T
Zy = Z Pial{t=ty + Vi

=T1+1

fort; =Ty +1,...,T where:
Pia = A+ Vay, (62)

with:

V;,t =0 Vt>1,
noting that:

T
1{t>T1} = Z 1{t=ti}'
i=T1+1

Potentially, some irrelevant impulses may be retained angesrelevant ones omitted, both of which
could lower the power derived below. However, when a breatuxs; few non-break impulses are
retained, although for small values dfsome of thep; , may be omitted as noted in section 6 above.

Recording which impulses matter, and adding these to (%@ndi64), yields the full-sample regres-
sion (considering first the case where all relevant impulsg® detected in the marginal model):

T

=m0+ Tzt Y Gialgy e (63)
i=T1+1

To see whether such a regression will have any power to deikaes of super exogeneity, consider the
‘instantaneous’ relation given by:
Elye | z¢] = co + §/1,tzt
so that:
Yt = S0t +S14%¢ + € (64)

whereE [e;| = 0 andE [z;e;] = 0 implying:

-1
E S0t ~ 1 N1y BN >1yy
Si,t ALy AN1gsry + o A(BA) Ls1yy + Baay
_ X (B - 7) 1{t>T1} )
Y

This suggests the model:
Y=~z + XN (B —7) lpsny +e (65)

matching (61), so that adding all the indicators selectethfthe marginal model should substantively
improve the fit wher8 # ~. Indeed, (65) coincides with the DGP here {sg} is an innovation process.
The power of thé--test of:
HO: 51‘70[ =0 V’i,

in (63) by anF?j%fQ depends on the strength of the super-exogeneity violati@nr; ), the sizes of
the breaksA, the sample siz&’, the relative number of periods affected by the break, and-onFor
example, afl” = 100 with a mid-point break inducing 50 impulse dummies, siR¢&3) > 1.97|Hg) ~
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0.01 andP(F3g > 1.62|Hy) ~ 0.05, these relatively low values ef,, suggest that such a test is likely
to have some power.

Before deriving that power, we noted above that test powaldgootentially be increased by forming
indices of the impulses found in the marginal model (see Elgndry and Santos, 2005). Thus, instead
of adding thel' — T} individual 14,_,,,, one could add the composite variablgg and:s ; as in (15).
This always results in a two degree-of-freedom test, whgdiracan be computed automatically as:

ye=T0+ Tz + Tol1t + T3lot + €. (66)

The size and power properties are checked by simulatiombelod contrasted with the optimal, but
generally infeasible, index;.7,;. Note that there should not be any selection of which dumrues
retain in the conditional model, simply a one-off test of ghiat null.

7.1.1 Asymptotic power of theindex test

A case where theoretical analysis is feasible is wheny, y is known, and the test only depends on the
index 17,3 In this specific case, the index-based test is equivalemtdhow (1960) test for a known
break point (see Salkever, 1976), but that equivalence neillhold in general for (say) intermittent
changes. Then, the index-based test is of the higtl,-» = 0 in:

Ye =70+ 712 + ol + ug (67)
where the DGP is (65) written as:
Yy =72+ (B—7) Algsmyy + e (68)
Since (68) is correctly specified,and(3 — )’ A are consistently estimated with:

— -1
AR A, Elduy)
( % )] o e <Z E [thLt] E [ZtZH )

t=1

_ 0 (T ENERA SNE (69)
T —35 A D ‘

Vv

The power depends ox, r, T, 0., , as well as the departure betweeiand3 induced by the failure of
super exogeneity. Since:

/
€t = V1t — 7Y V24,

then:
02 =01 — 0"1222_210'12.
Let:
Y =KK soK'EpK=1, 4
where:

K/Zt = K/Al{t>T1} + K/Vg,t

and\* = /rK’'X\ is the normalized break impact. Then the non-centrality bfest ofHy: 72 = 0 in
(67) is:

E [tTQZO] = (B — 7), )\\/ITT = \/T ()‘*), K- (B — 7) = Pra (70)

oer/1+TNELA /(o011 — YEm7)y/1+ A (A




20

The non-centralityp, ., in (70) would be zero i3 = ~ (no failure of weak exogeneity), or X = 0 or
r = 0 (no shift in the marginal process). Otherwiss,, is monotonically increasing iv'T, (3 — v)
and in\* (even though increasing* also increases the denominator), and monotonically dsiciggén
o, andX,, ceteris paribus

We compute the power function using the approximatiotiiztgO by a chi-squared with degrees of
freedom discussed in section 6 above with ; (¢7,,) ~ X1 (¢2.) ~ hx2, (0) from (49). Then, from
(50), P [xI (¢2.4) > CanH1] ~ P [x2, (0) > h™'c,,]. For example, whep? , = 5 for ¢,, = 4, then
h = 51/26 ~ 2 andm = 13 with P [x}; (0) > 2] ~ 0.9998.

Finally, go%a should also be the non-centrality of the correspondirgst, a conjecture that can be
checked by its mean value in the Monte Carlo simulations. ¢él@r the power may not be monotonic in
the arguments af? , since the degrees of freedom of fheest alter with-: a given value of\} achieved
by a larger,/r will have lower power than that from a smallgfr. More precisely, we approximate the
Fr_7 5 (¢ra) by its numeraton? (¢,.q) and that in turn by (48) using the more general formulae in
(49)fork =T — T, =Tr. Then:

P Xy (¢r.a) > Cay | Hi] = P [x2, (0) > B~ "ca, | (71)
where:
Tr+ 2¢7 Tr + ¢?
h= T and = — e (72)
Tr+¢iq h

In comparison to the numerical example following (70), whén= 20 (say) forT = 100, thenh =
70/45 ~ 1.56 andm ~ 29 with c,, ~ 31.4 sOP [x3, (0) > 20.1] ~ 0.89, delivering a somewhat lower
power.

7.1.2 Allowing for stage 1

The above results are conditional on keeping all and onlye¢leyant impulses from the marginal, but
the analysis in section 6 revealed that was itself dependlerihe parameters of the marginal DGPs.
Nevertheless, we can extend the analysis roughly to alloach an effect by distinguishing the number
of elements in the index ; from the length of the break. In a bivariate setting, coroesiing to (65)
when the DGP is (68), we have:

— -1
A(B =) ~ E[3,] Elaugl "\ E[yp]
E ~ ;
[ g ] (Z Elzing] B[] ; E [ys2]
e e ) BApar
N Apgr A2r + 099 BN?r + o929

_ (A(ﬂ—v>>+w—wvr<1—pd><—A>' 72

¥ A2 (1 — pd) + 099 1

Comparing (73) with the consistent estimates and theiawags in (69) which result when the break
date is known, the effect of stage 1 selection is bound to lossadf power. More precisely, letting the
estimated stage 2 model be:

Y = Kozt + K1+ ug (74)
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leads to a modified non-centrality corresponding to (70)mie= 2 but for (74), namely:

E [t o] = vIrpa(B— A (75)

ouy/ (1 + A2rosy,)

SO:

2 Trpa (8 —)* X _ Pao2¢ia
E |:tli*=0:| == 1 == 2 5
1 o2 (1+ Nroy) os
where: )
(1—pa) N (B—1)
A2 (1 —pg) + 022
Thus, the power falls directly becaupg < 1 and indirectly because? > o2. For example, com-
bining the parameter values for the tests just above withdbation shift that deliveregh; = 0.16
for each impulse in section 6 yields (wheké = 09 = 5, 3 — v = 0.25, Tr = 20, 02 = 1 S0
02 =1.23)E [tz;:o} = 0.65, which is a notable reduction in the non-centrality. Howegirereasing to
A = 2.5,/099 raisespy t0 0.71 and E[tﬁfzo] to 11.4, so the power rises quickly towards the maximum,
essentially reaching that bound hy= 4,/52. Notice from (76) that-2 need not tend monotonically to
o2 as) increases, although it eventually converges spice- 1 as\ gets sufficiently large.

2 2
uzae+022

g

(76)

7.2 Invariance failure

The previous subsection concerned a model where the regrdasked invariance to a location shift
in the marginal model because of a failure of weak exogenedyced byy # 3. Nevertheless, the
test had some power, since the non-centrality was non-zeteruhe alternative of no weak exogeneity
with a shift in the marginal process. We now allow the paramsetdf the marginal and conditional to be
directly cross-linked, where the marginal remains:

z = Aot + Vo = Al + vy,

with E[z;] = Ay~7) = po,. Moreover, there is no ‘direct’ violation of weak exogemein that
~ = B, but the cross-link between the means violates super erdgenamelyu, , = ﬂgum when:
B = Bo + Bilysmy, (77)

Y ) N [ w? + BiT20B; BiXa
z Moy | 3928y 399

Thus, the parameters of the conditional distribution shifen those of the marginal process alter. Since
Ve = By

where:

(78)

Elye | ze] = Bibra, + B (ze — koy) = Boze + B12ed fsmyy- (79)

The marginal model is the same as in the previous sectiop; $6= A + v, from (62), and hence a
test based on adding the associafed,_,,, } and{1;,_,,}2;, }, or their matching summaries as in (15),
should also have power against violations of invarianceyeasow show.
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The regression equation postulated by the econometrisiireisame as (59), but the data moments
differ for the changed DGP:

Elze] = Algory
Elyd = (Bo+B11lpsny) Elzl = (8o + B81) Mpsmyy
Elzz] = E[(Alpsmy +vae) Mpomy +v2) ] = AWl + Za
Elziy] = E :(Al{t>T1} +var) ((/30 +B11sny) Mpsny + Ul,t)}
= (AN +22) (B + 1) lismy + 22280 (1 — Lysryy)
Eleatyd] = E :(1{t>T1} A+ vaul) ((Bo + B1ly=ry) Alpsmy + vl,tﬂ

= (AN +22) (B + B1) Lism)

Hence, the implicit full-sample parameters of (59) become:

R )] [&( 1 El \] [&( Ewm
E[( K1 )] B [;(E[Zt] E [2:2] )] [;(H%%])

(1 N ) (By+B1) Ar
T U AN+ 3y AN By +B1)7 + X2 (By + By7)

/80 +/61 Infl

which is similar in form to (60), and simplifies to the vector 3, + 3,)’ when\ = 0.
The ‘instantaneous’ relation is again given by:

Yr = <0t + 1 4% + € (80)

where:
ot = Efye] — C/l,tE z:] = (By + 51)/)‘1{t>T1} - §/1,t)‘1{t>T1} =0,
and:
10 ~ (E[(z—E[z]) (z —Elz])]) " E[(y — E[ue]) (z¢ — E[z])]
2521E ['Ul,tVQ,t]

= Bo+Bil>my

S0 as expected:

Yt = Bgzt + B/lztl{t>T1} +ep = T/lzt + T/QZtl{t>T1} + e;. (81)
Since:
T T
Lsryze = Y lp=z= Y Pili=u)
i=T1+1 i=T1+1

(say), then adding a complete set of impulses from the margiodel should detect departures from
super exogeneity. The index equivalent here requires gddamimpulses from the marginal model times
z, S0 differs from the previous case, albeit that both indexgs= Lty andey; = Lismy 2t could
be calculated and added.
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7.2.1 Asymptotic power of thetest of invariance

Two issues where theoretical analysis can shed light cartber power of the test based @n (adding
L2+ as in (81), which is the model analogue of (79), so that| = 0 = E [e|z]), and just adding the
index 1 7,y. First, for addings ¢

Y = Tﬁzt + T/ng,t + ug. (82)

The variances of the parameter estimates from (82) are sppately:

71 N T Elzz,] E [thlzt} >
< T2 )] - [; ( Elzitoe] Efeaeh]
< (ANT +Bg9) (AN + o) 7 )] B

(AN +Zg0)r [(AN 4+ Zg0) 7]

-1
V

Q

2
Ie
T

o? D —r3gy
T T\ = (- (N +B0) T sy )

Consequently, a&* = /rK’'A, and noting that:
_ -1 _
(=) AN+ 202) T 475 ) = (AN + Tn) (1AN + Z2) ' o,
anF-test ofr9 =0 is:

B1 (()\X + 3ga) (FAN + 222)71 2322) By

ElF=0] = (T'=2n)r(1-r) o2 (n—1)
’ n— *y */ * ) */ 11—
= (T—2n)(1—7) BT (XA :;T(i) E)‘l))\ 1) K6 = 67 0

ase; = y; — E [ys]z] s00? = w2,

In a scalar setting, so = 2:

Bi/T (N +oo)r(1—71)o2 VT (1 _T)ﬂl\/r+(/\*)2 — s
Ue\/)\Q’]”—i-UQQ N w* /1+(A*)2 - ¥rao

with w* = w/,/o22. Again¢, ,, is monotonically increasing iA*, in 4, and inr for fixed \; and because
of the form of (77),¢, o # 0 even if\* = 0.

The power can be calculated as in (47)—(50) above.

Thenqﬁ%a probably represents the non-centrality of Ergest: this can be checked by the mean value
in the Monte Carlo simulations using the formula in Johnsah ldotz (1970, p.190) that:

1 o ko (kl + ¢g,a)
N e ©

The power can be calculated as in (50)—(72).

E [t7'2=0] =
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7.2.2 Allowing for stage 1 effects

Returning to (82), where, ; reflects the power of the stage 1 selection of impulses, thma&®rs

become:
T N £l Elzz;] E [thg,t] e E [z:y:]
. [( T2 )] B [g Elzetay] E[eoth,] ; E [t2,191]
. ,30 — (I — R_IEQQ (1 — T‘)) ,31
B ( RSy (1-r)6 ) (54
where:

R = (A)\/—l-zgz)r(l—pd)+222(1—7‘).
The bias effect vanishes whep = 1 asR = X5 (1 — ). From (84):

V7] = %5 ([(AX + %) par] T+ R*l) ,

so theF-test of 5 = 0 has an expected value of:

BiE»R™ ([()‘X + 392) Pd?"]_1 + R_1>_1 R %50,
o2 (n—1) '
It is difficult to simply this further, but in the bivariate se, we have:
Tpaf? (N2 + a22) 7 (1 — 1) 02,
U% ()\27‘ + 022) [(/\2 + 0'22) T (1 — pd) + 09292 (1 — T‘)]
Paoaz (1 — 1) Ug 9
Ug [(/\2 + 022) r (1 — pd) + 099 (1 — T‘)] e

E[Fro—o] = (T —2n) (1 —7)?

E [t2,_]

T0=0

7.2.3 Asymptotic power of theincorrect index invariance test

Now the fitted conditional model is the incorrect specificatiassuming a known break:

ye = (1) 2 + 50+ e (85)
with average estimated parameters:

T T E(zz;] E|[z4t14] Tz Ztyt
1 _ t ,
- [( 5 >] B [; ( Elzi1s] 4, ; [yre1.4]
(

_ (/\XT + 222) Ar - rAXN (B + B1) + X2 (By +rB1)
Nr r r(Bo+B1) A

Bo + 16
)\/51 (1—r) .

Although these estimators are inconsistent@grand 3, respectively, the important issue is the power
of the test on the relevance af; which yields forr # 0:

VTrNBy (1 —r) B VTX'K™18, (1—7)

E [tr=0] = =
O \/(1 +rNE5,A) \/oﬂ + 8L (K)TTK 18 (1 —7)4/ (1 + A7)

= 1/}1”,047
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noting that:
e = Bozi+Bizdysny +e— (Bo+Bir) ze — BIA (L —7) Lsmy
B1 (Zt (1{t>T1} - 7“) —A(l-r) 1{t>T1}) t e
= B ((Lsmy =) Myomy +vae) = A1 =) 1gory) +e
= ,6/1V27t (1{t>T1} — ’I”) + €
SO:

1
o2 =E T Z (B1var (Lgsmy —7) + et)2 =+ B1Z0Byr (1 —-1).

T
t=1

Thus, v, o is again monotonic i\*, but need not be monotonic infor fixed A. Also, try=o is less
powerful thant.,_o, as¢?,, > 7. Thus,¢? ,, the non-centrality of th&-test, which is applicable in

r,o
the present setting, has an important invariance to theesairthe super-exogeneity failure, and should
exceedt/;,?,a: again this can be checked by the mean value in the Monte Gianldations, and the power
function calculations documented above.

7.3 Weak exogeneity failure under constancy

Reconsider the bivariate example in (56) above, but whépaedmeters are constant, so:

yr = B'ze +er = B'ze — (B —72) (2t — po) + e (86)
with:
Zi = Wy + Vo,
butE[e;|z;] # 0 as:
et =+ (V2 — B) vay
andE[n;|z;] = 0. One mode of generating such a model is wher= 3'z¢ + n;, but the outcome; is
used in place of the expectatiaf. Writing the fitted model as:

yt:To—l-T/th-l-ut (87)

then:
I -1 /
1 —Ho B 1y
—po  (Hophy + X22) HopthB + X227y

_ (B —2) 1a
Y2

soT; estimates the regression coefficiggtrather than the structural parameggrand correspondingly,
E[z,u¢] = 0in (87).

Now only impulses corresponding to randomly lakgg will be retained, of which there will beT"
on average. The index of these impulses again has the form:

m
| — |
QD D
— (e}
—_
12

aT
Wy = Z @i,al{t:ti}a
i=1
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where:
@z‘,a AT when |v27ti| > Co-

Thus:

/
€t = Yt —T0 — T1Z¢y — To2Wy
ol

= Buy+v5 (2 — po) +1ne — (B~ ’72)/ Ko — Y9zt — To Z S?’i,al{t:ti}
i=1
aT

= -7 Z V21, Lip=t,} + - (88)
=1

Since the largest of the, ;, in (88) are eliminated by setting. = 0 to deliver the innovation component
1, there will be essentially no detectability of the failufengeak exogeneity.

8 Co-breaking based tests

A key assumption underlying the above tests is that the pofierpulse saturation tests to detect breaks
and outliers was not applied to the conditional. In manyagituns, investigators will have done precisely
that, vitiating the power of the direct super-exogeneistd¢o detect failures. Conversely, one can utilize
such results for a deterministic co-breaking based tesipérsexogeneity.
Again considering the simplest case for exposition, carsatlding impulses to the conditional
model, such that after saturation: .
Y = Bz + Z ¢j1t]- + 4. (89)
j=1
At the same time, i, denotes the significant dummies in the marginal model:

2t = W+ Z (511t2 + U (90)
1€Saq

then the test tries to ascertain whether the timing of theulsgs in (89) and (90) overlaps. For example,
a perfect match would be strong evidence against super egitgecorresponding to the result above
that the significance of the marginal-model impulses in thed@tional would reject super exogeneity.

9 Simulating the power s of automatic super-exogeneity tests
We undertaken simulation analyses for all three scendiiesfor a bivariate relation, then trivariate.

9.1 Failure of weak exogeneity under non-constancy

We begin by considering violations of super exogeneity duefailure of weak exogeneity, thatis£ ~,
although invariance holds. Further we consider a levet.sFiife relationshigu; ; = B2 ¢ holds both in
the first regime and in the second regime, but:

P2t = Mgy + p20 (91)
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and so:

pae = BALs1yy + Buzo = BALgs1y + 110 (92)
HencegA\ is the level shift in the mean af; at 77. We allow g\ to vary across our Monte Carlo
experiments to obtain results associated with level shiftdifferent magnitudes. In particulag, =
A//022 takes the values, 2, 2.5, 3 and4. We also allowg to vary across experiments to obtain
different degrees of departure from the weak exogeneitdition: in particular,3 takes the value8.75,
1, 1.5 and 1.75, where the first represents the strongest departure fromélag exogeneity condition
relating 5 and~ and the last represents the weakest violation of that dondiEinally, we also consider
different sample sized/{= 100 andT = 300), break pointsly, and the impact of different choices of
the significance level in the marginal and in the conditioriddroughout all Monte Carlo experiments,
M = 10000 replications were conducted. For the impulse saturatidghémmarginal model, a partition
of T'/2 was always used.

We investigate the three new types of automatic super exityerRsts:

(1) ajointF-test in the conditional model, on the set of dummies addeduse they were signifi-
cant in the marginal (after single impulse indicator satareof the marginal and retention of the
statistically significant indicators);

(2) at-test on the individual significance in the conditional miaaf@n index formed using the retained
single impulse indicators in the marginal after its impus¢uration (the index weights are the
estimated coefficients of the respective indicators in thegmal model).

(3) anF-test on the joint significance in the conditional of two irds: one formed as described in the
previous paragraph and another one whose weights are tegbraf the weights in the previous
index, for each observation, by the value of the regressoameconditioning on, for that same
observation.

We begin by investigating the first test. Table 1 reports timpigcal mean rejection frequencies
of the null in the jointF-test when a sample size @f = 300 is used and 5% significance levels are
employed both in the marginal and in the conditional modeélg level shift occurs at observati@nl.
Hence, the second regime has a lengtlt o 50, sor = 1/6. The power of the test increases with
the decrease i3, as expected, since a smalleindicates a stronger violation of the weak exogeneity
condition. Furthermore, also as expected, the power ofdsieis increasing with the magnitude of the
level shift. Even mild violations of the null are easily deted for level shifts o2.5¢. The non-centrality
goz,a in this bivariate case, from (75), is:

2 kpq (8 — V)Q d?03:

= 93
e o2 (1 + d?r) (93)
with powerp, = P [x2, (0) > h™'c,]| where:
k4202, k+ @2,
h = i m = i (94)
k+ 07 q h

In table 2, we investigate the impact of reducing the lendthe second regime th = 25. All the
other defaults of the experiments leading to table 1 apply.

The previous conclusions still apply, but the empirical poig never smaller when the break length
diminishes, contrary to the prior theory: the degrees addmn of theF-test must be playing a funda-
mental role here. This is partly the motivation to look inti@ tsecond class of super exogeneity tests:
those based on an index replacing the indicators (see Handrgantos, 2005).
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d |B=075[8=1]B=15]3=175
1.0 | 0.1910 | 0.1527] 0.0777 | 0.0539
2.0 | 0.9722 | 0.9362| 0.5289 | 0.1497
2.5 | 0.9999 | 0.9930| 0.9173 | 0.3388
3.0 | 1.0000 | 1.0000| 0.9985 | 0.6527
4.0 | 1.0000 | 1.0000| 1.0000 | 0.9672

Tablel Level shift at?y = 251, T' = 300, 5% used in marginal and conditional.

d | =07 |p=1|p8=15|pB=175
1.0 | 0.3767 | 0.2742| 0.0969 | 0.0601
2.0 | 0.9999 | 0.9968| 0.8026 | 0.2376
2.5 | 1.0000 | 1.0000| 0.9902 | 0.5045
3.0 | 1.0000 | 1.0000| 1.0000 | 0.7970
4.0 | 1.0000 | 1.0000| 1.0000 | 0.9839

Table2 Level shift atTy = 276, T' = 300, 5% used in marginal and conditional.

To assess the impact of the choice of the significance lelelk, in the marginal and in the con-
ditional, we consider the case where a more stringent sigmifie is used in the marginal( = 1%),
whilst 5% is still used in the conditional. We assume the remainingquaefsettings, namely = 50
(where these are the last 50 observations of the samplele Jabports results for only two values 6f
as these are clear enough to highlight the conclusions.

d |f=1]8=17
1.0 | 0.0850 0.0520
2.0 | 0.2894| 0.0766
2.5 | 0.6802| 0.1192
3.0 | 0.9647| 0.2680
4.0 | 1.0000| 0.8627

Table3 Level shift aty = 251, T' = 300, 1% used in marginal and 5% in conditional.

Results should be compared with the matching columns i thbiThe choice of 8% significance
level in the marginal, instead of1&% significance level, leads to a more powerful test, otherghineing
equal.

Table 4 investigates the use 05% significance level in the marginal whilstl@% significance level
is used in the conditional, assuming the same defaults bes3ab

This choice of significance levels yields a more powerful tessuper exogeneity. Empirical rejec-
tion frequencies are never smaller than the ones in table 1.

For these significance levels, the effect observed in talsi#l 2ccurs, namely a trade-off between
power and the length of the break that leads to cases wheréypie of failure of super exogeneity is
more difficult to detect by th&-test for longer breaks. Table 5 illustrates this for theeocakeres = 1.
The break in the underlying DGP is assumed to occur at obsemvg; = 201 and hencé: = 100. We
neglect the results for small level shifts.

We now turn to investigate the effect on power of the sample. sTable 6 reports the Monte Carlo
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d |B=075[8=1]B=15]3=175
1.0 | 0.3063 | 0.2486] 0.1462 | 0.1099
2.0 | 0.9878 | 0.9690| 0.6604 | 0.2512
2.5 | 1.0000 | 0.9996| 0.9570 | 0.4743
3.0 | 1.0000 | 1.0000| 0.9920 | 0.7700
4.0 | 1.0000 | 1.0000| 1.0000 | 0.9847

Table4 Level shift aty = 251, T' = 300, 5% used in marginal and 10% in conditional .

d [ =1
2.5 | 0.0972
3.0 | 0.7757
4.0 | 1.0000

Table5 Level shift atT; = 200, T' = 300.

results obtained using the same settings as previouslydlganith a significance level 05% in the
marginal model and a significance levellof% in the conditional model) whe' = 100. The level shift
is assumed to have occurred at observation 81, yieldiag20.

d [8=07]8=18=15]8=175
1.0 | 0.1408 | 0.1306/| 0.1057 | 0.0960
2.0 | 0.5553 | 0.4944| 0.2805 | 0.1487
2.5 | 0.8613 | 0.8189| 0.5484 | 0.2306
3.0 | 0.9816 | 0.9719| 0.8447 | 0.3910
4.0 | 0.9999 | 0.9999| 0.9972 | 0.7267

Table6 Level shift atT; = 81, T = 100.

First, even for a sample size @f = 100, the test has good power against mild violations of weak
exogeneity provided there is at least a level shift, everoiftno steep (power is acceptable even for
6 = 1.5 for a break of at least.50).

Although results are not directly comparable (given thatglrcentage of observations in the second
regime differs, even if not greatly), there is a loss of powéh the reduction of sample size. Further,
power continues to increase monotonically with the magieitaf the level shift and with the decrease
in 3. The trade off between length of the break and power is algatuife of smaller sample sizes, as
illustrated in table 7, where a break of lendth= 30 is assumed to begin at observation 71. Again, the
results for very small level shifts are negligible.

From table 7, the increase in the length of the break is reduits power. However, moderate level
shifts (say3c) allow the detection of violations of weak exogeneity withigh relative frequency.

We now investigate the empirical power of the index-basst t€able 11 reports the results for a
sample size o' = 100, and for the DGP same parameter values: the shift occurssanaiiion 81,
implying k£ = 20.

The first conclusions concern comparing tables 11 and 6t, Rithough the index-based test has
higher empirical power for small shifts (magnitudesand 2¢), the joint F test tends to do better for
shifts of higher magnitudes. Differences are, howeveegrofbo small to be significant, and on that basis
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d [8=075[8=1]8=15]p83=175
2.5 | 0.2602 | 0.2447] 0.1736 | 0.1182
3.0 | 0.7078 | 0.6805| 0.4857 | 0.2212
4.0 | 0.9969 | 0.9955| 0.9672 | 0.5758

Table7 Level shiftatT; = 71, T' = 100.

T=300]8=07]3=1]8=15]|8=175
o 0.0805 | 0.0654| 0.0350 | 0.0263
20 0.7169 | 0.6119] 0.2196 | 0.0618
2.57 0.9770 | 0.9534] 0.6159 | 0.1431
30 0.9999 | 0.9995] 0.9526 | 0.3724
4o 1.0000 | 1.0000] 1.0000 | 0.9084

Table8 Level shift atT} = 250, 2.5% used in marginal and conditionkktest.

T=100 | B8=07 | =1 |B=15|pB8=175
o 0.0267 | 0.0270| 0.0257 | 0.0225
20 0.1144 | 0.0982| 0.0540 | 0.0345
2.5% 0.3920 | 0.3493| 0.1590 | 0.0550
3o 0.7572 | 0.7153| 0.4336 | 0.1118
4o 0.9956 | 0.9939| 0.9491 | 0.4181

Table9 Level shift atT} = 80, 2.5% used in marginal and conditionkktest.

T=300|p8=07|8=1|pB=15|08=175
o 0.0646 | 0.0530| 0.0339 | 0.0266
20 0.6161 | 0.5565| 0.2920 | 0.1032
2.% 0.9176 | 0.8905| 0.6633 | 0.2578
3o 0.9937 | 0.9903| 0.9209 | 0.5307
4o 1.0000 | 1.0000| 0.9994 | 0.9085

Table10 Level shift at7T; = 250, 2.5% used in marginal and conditiongtest.

d | =07 |p=1|p8=15|p8=175
1.0 | 0.1477 | 0.1390| 0.1169 | 0.1094
2.0 | 0.5860 | 0.5462| 0.3463 | 0.1860
2.5 0.8322 | 0.8024| 0.5971 | 0.3025
3.0 | 0.9522 | 0.9444| 0.8170 | 0.4730
4.0 | 0.9969 | 0.9951| 0.9686 | 0.7228

Table11 Level shiftatT} = 81, T = 100: index test.
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it would seem the index-based test does better. Howeversiakearly dominates the other, for the
defaults used in this experiment.

Table 11 also deserves to be analyzed by itself. First, gdimethe power of the index-based test
(for shocks of magnitudes greater thanare reasonable. The empirical power is decreasing gets
closer toy = 2, as expected. Furthermore, for the range considered (toagsi up to 4) the power is
monotonically increasing with the size of the shift, for ahy

The index-based test istdest on a single parameter, so its degrees of freedom dcepend on the
number of single-impulse indicators ‘picked up’ from thergiaal model. Hence, it is not to be expected
that the test would face similar problems to those detectiéidl tive joint F-test, where a smaller break
length could be associated with higher power. Table 12 estéme analysis by considerifig= 300 and
k = 50. Results are to be compared with table 4.

d [B=075[8=1]8=15]3=175
1.0 [ 0.1932 | 0.1711] 0.1217 | 0.1000
2.0 | 0.8661 | 0.8370| 0.6209 | 0.3139
2.5 | 0.9874 | 0.9817| 0.9011 | 0.5720
3.0 | 0.9997 | 0.9997| 0.9891 | 0.8015
4.0 | 1.0000 | 1.0000| 1.0000 | 0.9687

Table12 Level shift at7; = 251, T' = 300: index test.

For this larger sample size, the joiRttest dominates the index based test in terms of power. The
only exceptions occur for some intermediate magnitudesvwhe- 1.75. In the following subsection,
we shall again come to the conclusion that the index testrisrgdly less powerful than the joift-test
for larger samples. On the basis of this, there seems to bkeaodecision as to which test is better: one
will dominate in some cases, the other will dominate in o#edtings.

Table 14 reports empirical power for the case where two ieg@xe used. A sample size®f= 100
is considered. Results are to be compared with table 13 vehgirgyle index is used, since sample sizes
are the same, and so are the significance levels used (2.5%mntibe marginal and in the conditional). It
is clear that the single index dominates the use of two irgl@reterms of power) for this type of failure
of super exogeneity.

d | =07 |p=1|p8=15|p8=175
1.0 | 0.0327 | 0.0314| 0.0287 | 0.0244
2.0 |1 0.2331 | 0.2069| 0.1025 | 0.0475
2.5 05148 | 0.4712| 0.2572 | 0.0930
3.0 | 0.7888 | 0.7541| 0.5198 | 0.1918
4.0 | 0.9871 | 0.9813| 0.9007 | 0.4924

Table13 Level shift atTy = 81, T = 100: index test, 2.5% significance.

If, instead, 5% significance levels are used in the margindl1®% in the conditional, the empirical
rejection frequencies wheh = 100 and7T = 300 are reported in tables 15 and 16, for the two indexes
test. Again, both refer to violations of super exogeneite do a failure in weak exogeneity when
invariance holds but there is a level shift.

Even for these more liberal model selection strategies,eptavdetect this type of departure from
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d |B=075[8=1]B=15]3=175
1.0 | 0.0273 | 0.0272] 0.0253 | 0.0230
2.0 | 0.1524 | 0.1345| 0.0707 | 0.0351
2.5 | 0.4284 | 0.3862| 0.1956 | 0.0706
3.0 | 0.7417 | 0.7027| 0.4425 | 0.1513
4.0 | 0.9821 | 0.9750| 0.8774 | 0.4205

Table14 Level shift atT; = 251, T = 300: two-index test, 2.5% significance.

d | =07 |p=1|8=15|p8=175
1.0 | 0.1277 | 0.1235| 0.1087 | 0.1052
2.0 | 0.4855 | 0.4453| 0.2742 | 0.1515
2.5 | 0.7668 | 0.7328| 0.5089 | 0.2452
3.0 1 0.9323 | 0.9153| 0.7572 | 0.3956
4.0 | 0.9951 | 0.9928| 0.9546 | 0.6484

Table 15 Level shift at7; = 81, T' = 100: two-index test, 5% significance in marginal and 10% in
conditional.

d | =07 |p=1|8=15|p8=175
1.0 | 0.1763 | 0.1575| 0.1139 | 0.0980
2.0 | 0.8135 | 0.7772| 0.5317 | 0.2494
2.5 0.9779 | 0.9681| 0.8510 | 0.4820
3.0 1 0.9992 | 0.9986| 0.9788 | 0.7200
4.0 | 1.0000 | 1.0000| 0.9997 | 0.9469

Table 16 Level shift at7; = 251, T = 300: two-index test, 5% significance in marginal and 10% in
conditional.
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super exogeneity is higher with the single index than withtthio indexes (compare with tables 11 and
12 respectively).

9.2 Failure of invariance when weak exogeneity holds

We now consider a DGP where the null hypothesis of super eityeis false, but weak exogeneity
holds (that is;3; = =, Vt). LetT™* be such that < T* < T, and, fort < T™*, let the DGP be given by:

Yt 2 21 10 \ |
()l (0) (5 7))
Yt 3 2% 9 \]

(1)l ()5 5))

0B; = = even after the break, but singe = alg,ta;;,t, and the change a5 is not offset by the change
in 012, the parametep, ;, which containsy,, is not invariant to changes in the parameter space of the
marginalgs ¢, which containsras ;.

For the Monte Carlo experiments, we work with the same ggtas in the previous subsection. We
consider the same sample sizes as before: 100 and7" = 300. We allow s to take values from the
set{2,2.5,3,4} implying a certain set of pairs of unconditional means. Bynae also allow the break
length, k, to vary.

Table 17 reports the Monte Carlo results for a sample siZé sf 100. We always consider breaks
from a certairil™ until the end of the sample. Hence the break dates7are:81, 7' = 71 andT = 61
for k = 20, 30, 40 respectively:

whilst for ¢t > T,

T=100 | k=20 | k=30 | k=40
ps =2.0 | 0.3982 | 0.4939 | 0.5503
pus = 2.5 | 0.5438 | 0.5998 | 0.5628
5 =3.0 | 0.6810 | 0.6926 | 0.5605
us =4.0 | 0.9108 | 0.8527 | 0.5342

Table17 Invariance failure;” = 100.

Table 17 reveals that the test has good power even for a sanalle. An increase in the length of the
mean shift fromk = 20 to & = 30 increases the rejection frequency of the null. Nonethekegsrther
increase of equal absolute magnitude in the length of theklman reduce power (for greater level shifts)
and loses the monotonicity property (power does not inergath the size of the shift fok = 40).

In table 18, we maintain the default settings of the Montd&eaxperiment of the previous table, but
we consider a sample of siZzé= 300. We consider breaks at observatidfis = 261, 7 = 251, 7" =
201 andT™ = 161, matching respectively the valugs= 40, 50, 100 and140 considered in table 18.

The remarkable feature is the good power against this é&dtisuper exogeneity, for all break lengths
(which are in some cases always less or equal to a third ofaimple size) and even for the smallest
mean shifts considered.

Tables 17 and 18 use a 5% significance level in the marginakhsoal a 10% significance level in the conditional.
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T=300 | k=40 | k=50 | k=100 | k =140
us =2.0 | 0.5413 | 0.6008 | 0.8161 | 0.8980
s =2.5 | 0.7404 | 0.7968 | 0.8907 | 0.8157
ps = 3.0 | 0.8963 | 0.9288 | 0.9456 | 0.6800
us =4.0 1 0.9973 | 0.9991 | 0.9910 | 0.2878

Table 18 Invariance failure;” = 300.

Notwithstanding, table 18 also highlights the problem wd Hescussed for smaller sample sizes:
the length of the break adversely affects the power to delegartures from super exogeneity when
becomes ‘too big'. In the case discussed in table 18, thitemr dor k = 140. A set of results not
reported here indicates that for= 125, the same reverse effects on power might already be present.

T=100 | k=20 | k=30 | k=40
s =2 0.1874 | 0.2181 | 0.2400
ny =2.5 | 0.2864 | 0.2891 | 0.2496
wy =3 0.4063 | 0.3712 | 0.2558
s =4 0.6730 | 0.5352 | 0.2584

Table 19 Invariance failure;; = 0.87 = 80, F-test, 2.5%.

T=300 | k=40 | k=50 | k=100 | k =140
s =2 0.2885 | 0.3326 | 0.4506 | 0.5746
us = 2.5 | 0.4643 | 0.5062 | 0.5719 | 0.4930
wy =3 0.6726 | 0.7138 | 0.6969 | 0.4152
ph =4 0.9527 | 0.9644 | 0.8795 | 0.2382

Table20 Invariance failure; = 240 T' = 300, 2.5 per centk-test .

We now look at the empirical rejection frequencies of thd farlthe index-based test. We consider
only the case wherg = 300. The same defaults as in the previous experiment are usée iMonte
Carlo, namely significance levels of 5% and 10%. Table 21rntefbe results.

Comparing tables 21 and 18 shows that the jéirtest dominates the index-based test (with the
exception of the two largest unconditional mean shiftskfet 140). The power of the index-based test
is only acceptable for level shifts of length greater thamasadhreshold.

However, in spite of the power dominance of the jdirtest over the index test, it is nonetheless true
that the power properties of the index test are worth whigevegr increases monotonically both with the
mean shift and with the break length (this last claim coultibeomade for the joinE-test as referred to
above).

It remains to investigate the effects on power of using a itmmél model with two indexes: as
explained earlier, the first indey,, is the usual index where the weights are the dummy coeftiien
the significant dummies in the marginal; whilst the secortx) .2, uses as weights the products, for
each observation, of the respective indicator coefficistitreate in the marginal (if significant) and its
observed value for the variable we are conditioninggn,
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T=300 | k=40 | k=50 | k=100 | k =140
pus =2.0 | 0.2016 | 0.2095 | 0.2591 | 0.3167
pus = 2.5 0.2802 | 0.2916 | 0.4034 | 0.5691
w5 = 3.0 | 0.3602 | 0.3836 | 0.6483 | 0.8358
us =4.0 | 0.5725 | 0.6608 | 0.9793 | 0.9967

Table21 Invariance failure, index tesi, = 300.

Adding the two indexes to the conditional model, with parterep; andy-, the null hypothesis is:

Ho:p1 =92 =0 (97)

which can be tested using the usual statistic with null istion F with 2 degrees of freedom.
We consider the same departures from invariance as for theopis cases in this section, and the
same break lengths. A significance level of 2.5% is used in thet marginal model and in the conditional

model. Results are reported in tables 22 and 23 with respesarple sizes df’ = 300 and7T = 100,
respectively.

T=300 | k=40 | k=50 | k=100 | k =140
ps = 2.0 | 0.2257 | 0.2604 | 0.4329 | 0.5453
pus =2.510.3321| 0.3838 | 0.5285 | 0.6640
s =3.0 | 0.4518 | 0.5020 | 0.6521 | 0.8363
5 =4.0 | 0.6300 | 0.6653 | 0.9339 | 0.9939

Table22 Invariance failure, two-index test;, = 300.

T=100 | k=20 | k=30 | k=40
us =2.0 | 0.2440 | 0.3471 | 0.4874
s =2.5 | 0.3526 | 0.4562 | 0.5923
pus =3.0 | 0.4829 | 0.5765 | 0.7087
pus =4.0 | 0.7630 | 0.8243 | 0.9176

Table23 Invariance failure, two-index test, = 100.

Tables 22 and 23 should be compared with tables 25 and 24ateésgy, which report the empirical
rejection frequency of the null for the cases where the simipdex is used in the conditional and where
significance levels of 2.5% are used in the marginal and thditonal.

The two-index test has greater power to detect departurespefr exogeneity for invariance failure,
than the corresponding single index tests. This claim islyatespective of the choice of significance
levels. Tables 26 and 27 confirm this by reporting the emglifpower for a sample size @f = 100

when a 5% significance level is used in the marginal model ah@Pa significance level is used in the
conditional.
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T=300 | k=40 | k=50 | k=100 | k =140
us =2.0 | 0.0957 | 0.1016 | 0.1249 | 0.1601
us = 2.5 1 0.1490 | 0.1576 | 0.2060 | 0.3335
s =3.0 | 0.2260 | 0.2472 | 0.3964 | 0.6473
us =4.0 | 0.4241 | 0.4755 | 0.8746 | 0.9829

Table24 Invariance failure, index test; = 300, 2.5% significance.

T=100 | k=20 | k=30 | k=40
us =2.0 1 0.1008 | 0.1175| 0.1270
s =2.5 1 0.1478 | 0.1557 | 0.1570
s =3.0 | 0.2106 | 0.2139 | 0.2480
pns =4.0 | 0.3642 | 0.4276 | 0.5742

Table25 Invariance failure, index test; = 100, 2.5% significance.

T=100 | k=20 | k=30 | k=40
pns =2.0 | 0.6929 | 0.8346 | 0.9268
pus =251 0.7883 | 0.8985 | 0.9603
pus =3.0 | 0.8721 | 0.9435| 0.9791
pus =4.0 | 0.9767 | 0.9932 | 0.9982

Table 26 Invariance failure, two-index tesI, = 100, 5% significance in marginal and 10% in condi-
tional.

T=100 | k=20 | k=30 | k=40
us =2.0 | 0.2074 | 0.2424 | 0.2664
us =251 0.2734 | 0.3067 | 0.3414
pus = 3.0 | 0.3429 | 0.4017 | 0.4928
pus =4.0 | 0.5403 | 0.7031 | 0.8344

Table27 Invariance failure, index test, = 100, 5% significance in marginal and 10% in conditional.
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9.3 Failure of weak exogeneity under constancy

Finally, we consider a departure from super exogeneity due failure in weak exogeneity3(# ~)
alone, when invariance holds and there is no level shift. Wesidler the following alternative DGP:

<y>”N2[<ﬁ1><Té 1;)]- (99)

We allow 5* to take values from the sd0.5,0.75,1,1.25,1.5,1.75}, 5* # v wheny = 2. All the
default settings from previous experiments apply. Tableeg®rts the results for sample sizesiot=
100, 200 and300.

In table 28, apart from the empirical rejection frequencies also include the empirical significance
level in the conditional ¢.) for each sample size, when the nominal significance levidarconditional
is 10%.

T =100 | T"=200 | T'= 300
B* =0.50 | 0.096 0.0974 | 0.1009
B* =0.75 | 0.096 0.0974 | 0.1009
B* =1.00 | 0.096 0.0974 | 0.1009
B* =1.25 | 0.096 0.0974 | 0.1009
B* =1.50 | 0.096 0.0974 | 0.1009
B* =1.75 | 0.096 0.0974 | 0.1009
Qe 0.096 0.0974 0.1009

Table28 Failure of weak exogeneity under constariEy= 100.

As expected, the test has virtually no power against thisifof failure of the weak exogeneity
hypothesis. Indeed, averaging acrdds = 10000 replications, we conclude that the mean rejection
frequency is the same for any value®f considered, and virtually the same as it would be the case for
6* = 6 = v = 2, the value under the null of weak exogeneity. Hence, the ecapipower is equal
to the empirical significance level, meaning the test hasaweep to detect this form of failure of super
exogeneity.

9.4 Optimal infeasible-test power

The optimal infeasible test differs from those analyzedvabio that the location of the breaks in the
marginal proccess is known. Thus, there is no need to immdtgrate the marginal and retain the
relevant impulses. Rather (for the joiRttest, say), one tests in the conditional a set of single lsgpu
indicators, each of which corresponds to an observatidninvibe break period in the marginal proccess.
In the tables below we use a 2.5% significance level for tgstirthe conditional.

Hence, the empirical rejection frequencies are the engbigoxies of maximum achievable power
for the relevant sample sizes hére= 100. The break is known to be a mean shift starting at observation
T, = 80, so 20 single impulse indicators are included in the coowliti model. Table (29) refers to the
case of no weak exogeneity (and no constancy), but withisvee holding. Table (30) refers to the case
of invariance failure but with weak exogeneity holding.

Relative to the optimal infeasible test, the automaticstesised on saturation of the marginal natu-
rally lose a signifcant power for breaks of small magnitudes
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T=100]3=075]3=1]8=15]|8=175
o 0.9999 | 0.9941] 0.4040 | 0.0831
20 1.0000 | 1.0000| 0.9301 | 0.2467
2.57 1.0000 | 1.0000| 0.9730 | 0.3258
30 1.0000 | 1.0000 0.9851 | 0.3803
4o 1.0000 | 1.0000| 0.9881 | 0.432

Table29 Level shift at7; = 80, 2.5% test in conditionak-test: break location known.

T=100 | k=20 | k=30 | k=40
s =2 0.9977 | 0.9985 | 0.9964
ps =2.5 1 0.9995 | 0.9998 | 0.9983
wy =3 0.9999 | 0.9999 | 0.9990
s =4 1.0000 | 1.0000 | 0.9992

Table30 Invariance failure;l; = 80, 2.5%F-test: break location known.

The optimal test has power increasing with the length of tealbfor breaks of magnitudeand2o,
and a failure of weak exogeneity whee= 1.75 At T' = 100, wherek is the length of the break, we
obtain table (31).

T=100 | k=45 | k=40 | k=30 | k=20 | k=15 | k=10 | k=5
o 0.5720 | 0.5633 | 0.5145| 0.4232| 0.3477 | 0.2590 | 0.0725
20 0.9418 | 0.9376 | 0.9199 | 0.8801 | 0.8280 | 0.7198 | 0.4837

Table31 Weak exogeneity failurel’ = 100, optimal test, 2.5%, break location known.

The optimal test exhibits the predicted behaviour from tteoty section: power increases with the
break length.

10 Monte Carlo experimentswith n = 3

In this section, we conduct some Monte Carlo experimentssess what happens with the tests when
the DGP is the three-dimensional normal distribution:

Yt Ly 54/16 4 1
Z1,t ~ N3 2 s 4 5 2 (99)
Zot 3 1 2 4

which could also be expressed as:

Yt N /8//1’2 011 0/12
~ N3 5
Z Mo o1z Qo

wherez; andu, are2 x 1 vectors mm2 x 1 vectors,o12 isal x 2 row vector and2y, is the variance-
covariance matrix of;. Under the null of super exogeneity, weak exogeneity andriaiice must hold.

(100)
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Weak exogeneity entails thgt=~ = 9521012, which in this case is:

[ 14/16
5 ( 1o ) | (101

As p, = ' p,, the unconditional mean of is 11, = 19/16 = 1.1875, whereas the conditional variance
of y|z; is given by:
011 — 0'/1292_210'12 = w2 = 1/16 (102)

These conditions guarantee super exogeneity of the pagesnet the conditional mode};|z;, with
respect to changes in the parameters of the marginal made).fo

In the Monte Carlo experimentd/ = 10000 replications with sample sizes @f = 100 and 300
(albeit we focus oI’ = 100 to highlight the crucial features of the tests whanis not a scalar).
Throughout, we use 2.5% significance levels for both in theulse saturation stage in the marginal, and
in testing in the conditional.

10.1 Weak exogeneity failure under invariance for level shifts

We consider the block-test on the dummies retained from each of the marginal psass and the
single-index test, using two index variables: one for edcthe impulses retained from the location-
scale models fog; ; andzs ;. For the block--test, the relevant econometric model is:

yr =+ Bz + Bozogt+ Y deDi+ Y Dy 4wy (103)
S Sy
where itis assumed that ~ N [O, ag] , 51 andS, are the sets of indicators retained in the location-scale
models for the first and second elements ofzheector.
For the single-index based test, we use the econometriclmode

Yy = 0 + (5121,t + (5222,t + 7T1]17t + 7T212,t + V¢ (104)

The weights inl; ; and I, are the estimated single impulse indicators’ coefficientshe impulse-
saturated location-scale modelsz9f; and z, ; respectively. Again, we assume that~ N [0, aﬁ]. In
(104), the super-exogeneity test based on the single-iisdggo arF-test, with null hypothesis:

H017T1:7T2:O (105)

hence having two degrees of freedom. For the first superemeaty test considered above, the null
hypothesis is that all single impulse indicators’ coeffitgeare zero.

Here, we violate super exogeneity by losing weak exogersitgonsider DGPs whef@ £ ~, using
three alternative values fgg:

Bi= < - ) ; 52=< 2 ) ; ﬂ3=< e ) (106)

implying, respectivelyu, = —1, u, = 1 andu, = 0.25, so thatu,, = 3'u, and invariance hold. We
also allow for the existence of level shifts in the marginaqeess. For simplicity, we assume the level
shifts occur for bothz; ; and z; ; on the same daté;, are of the same magnitude, and only look at a
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d | By Bs Bs

1.0 | 0.0474| 0.0773| 0.0902
2.0 | 0.4776| 0.6782| 0.7455
2.5 | 0.8422| 0.9428| 0.9614
3.0 | 0.9856| 0.9968| 0.9987
4.0 1 0.9999| 1.0000| 1.0000

Table32 Index test conditioning on two regressars= 100.

sample size of' = 100 with the break start &éf} = 81, implying the break lengtkh = 20. We consider
break magnitudes of/5, 2v/5, 2.5v/5, 3v/5 and4y/5 asoss = 5. Table 32 reports the rejection
frequencies for these values @fand magnitudes of the level shift.

The results in table 32 reflect prior expectations. In paldic the empirical power of the test is
increasing with the magnitude of the level shift. Let the miagles of the level shifts be stored in a
column vectorA of dimensions2 x 1 (in our case, where = 3), then power is increasing with the
absolute value of3 — v)’ X. Hence, noting that:

|(/31—’Y)/‘ < |(52—’Y)/‘ < ‘(53"7” (107)

the test behaves according to theory: for each column ve€toagnitude) , the empirical power of the
test increases from,to 38, and then tQ3;.

Table 33 reports the rejection frequencies for the blbdiest. A preliminary Monte Carlo experi-
ment, under the null hypothesis, showed that the nominaifgignce 0f2.5% was well approximated
by an empirical rejection frequency of the null 284%. In table 33, we only consider values for the
break magnitude greater or equabte, as smaller magnitudes yield very small values for the epadir
power.

d | By Bs Bs

2.0 | 0.0663| 0.1738| 0.2292
2.5 | 0.2343| 0.5058| 0.5983
3.0 | 0.5512| 0.8303| 0.8869
4.0 | 0.9238| 0.9933| 0.9960

Table33 Block F-test conditioning on two regressofs,= 100.

Results in table 33 again confirm that the properties of tbekdF-test do not seem to be affected
by the existence of additional regressors to condition ohe &mpirical power of the test behaves as
it should from a theory point of view: increasing with the mégde of the level shift for eacs; and
increasing from3; to 3, and from this to3; for eachA. The empirical rejection frequencies are high
for shifts of at leas®.50. For bigger magnitudes, the test has quite good power ddaihses of super
exogeneity due to lack of weak exogeneity.

In conclusion, both the single-index test and the blbetest behave well in terms of power when
n = 3, that is when the single equation model is conditioninp@n more than one variable. This holds
when the alternative of no super exogeneity is due to a &iluweak exogeneity. We only look at these
two tests because it was the caserior 2 that the double-index test did not add power for this type of
failure of super exogeneity.
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10.2 Failure of invariance with weak exogeneity

Consider the following DGP for the fir§t — k observations in the sample:

Ys 1.1875 54/16 4 1
21t ~ N3 2 5 4 5 2 (108)
Zot 3 1 24

wherek = 20, and hencel} = 81. FromT;j to T (which we assume to b& = 100), the DGP will

instead be:
o 48/13 4 1
Yo )~ N ﬁ’f? , 4 6 2 (109)
“t 2 1 25
Then:
~ = o,y = ( 9/13 —1/13) (110)
and since weak exogeneity holds:
9/13
=3 = . 111
v=8 (_1 /13> (111)

As Q9 changesyy changes. Sincey € ¢, ;, the parameter space of the conditional model, Qngl €
¢, 4, the parameter spaces of the variables we are conditioming.g is not invariant taC®2., which
is the class of interventions of,,. Since invariance does not hold, super exogeneity fails fig
onwards.

In the DGP for the last 20 observations, the unconditionatoreof means of; has changed tp3.
We consider four possible DGPs for these last 20 obsenstibne variance-covariance matrix is always
as in (109), but with four possible vectors fat, and since weak exogeneity holds, four possible values
for 11,. In particular, we consider as vectors of unconditional msefar the DGP in (109) those in table
34.

Shift

15 = 2.0p, ( 2.307692308 4 6 )
w5 =250, | (2884615385 5 75 )
115 = 3.0p, ( 3461538462 6 9 )
s = 4.0p, ( 1615384615 8 10.2 )

Table34 Vectors of unconditional means in four DGPs.

We now consider three tests for invariance: the blBelest; one based on the single-index (which
makes use of two indexes as we are conditioningeen1 > 1 variables); another based on the double
index: along with the indexes in the previous section, agrativo indexes are considered (making a total
of four index variables), each of these refers to one of thigimal regressors and is the product, for each
observation, of the respective value of that marginal =ggre and the estimate of the single impulse
coefficient for that observation in tha marginal locati@ale model for that regressor (if this was found
to be significant when the location scale model was impulagazd).
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The econometric model on which the double index test is bssgigien by:
Yt = Ko + K125 + kezh + p1lis + palog + p3lse + palag + 1 (112)

wherel3; and 1, are the new indexes with respect to the single-index versfahe test. The null
hypothesis is

Ho:pr=p2=p3=ps=0 (113)
which entails4 restrictions instead df.
Table 35 reports the empirical rejection frequencies ofniliéfor the single-index test, the double-

index test and the block-test, for each of the four DGPs, given the sample size wearsidering and
the use, in the marginal and in the conditional, of a 2.5%i8agnce level.

T =100 single | double | block F
ps =2.0p, | 0.2702| 0.3515| 0.6067
ps = 2.5u, | 0.3359| 0.4448| 0.8712
ps = 3.0p, | 0.3639| 0.5056| 0.9733
ps =4.0p, | 0.384 | 0.5679| 0.9985

Table35 Invariance tests when weak exogeneity holds: 100.

The noticeable conclusion from table 35 is that, as occumigdn—1 = 1, the double index performs
better in terms of empirical power than the single index, nvtesting the null of super exogeneity in a
setting where the alternative is due to a failure of invarearather than weak exogeneity.

The empirical powers observed for the single index areivelgtiow. Notwithstanding, for moderate
level shifts (say3u,) the empirical power is acceptable when the double-indsixisaised.

Table 35 also clarifies that the blo¢ktest dominates the others in terms of empirical rejection
frequencies. It exhibits very reasonable empirical powerdvel shifts of all magnitudes considered.
This dominance did not occur for = 2.3

11 Conclusion

The concept of automatically computable tests for supegexeity based on selecting from impulse
saturation of the marginal process to test the conditionalaarly realisable. The tests proposed here
have the correct null rejection frequency in constant diomtl models when the nominal size is not
too small in the marginal at small sample sizes (e.g. 5%)afoariety of marginal processes, both
constant and with breaks. The tests also have power agaihset of super exogeneity when either of
invariance or weak exogeneity fails and the marginal pmobksnges. Neither class of tests uniformly
dominates the other. Their approximate power functionswlerived analytically for regression models
and explain the simulation outcomes well.

While all the derivations and Monte Carlo experiments heseelbeen for static regression equations,
the principles are general, and should apply to dynamictemsa(probably with more approximate null
rejection frequencies) and to non-stationary settingssetare the focus of our present research.

3It should be stressed that with> 2, neither of these tests behaves well with the break lengéisuls not reported here
reveal lower empirical rejection frequencies for> 20, for all level shifts.
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