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1 Introduction

Over the last decades, one of the main goals of economic regulation has been
to increase competition in markets that have traditionally been less compet-
itive. At the same time, technological progress has come to be seen as a
fundamental driving force of economic performance. In telecommunications,
plans for the introduction of advanced networks generate such high expecta-
tions about new or improved services, and acceleration of economic growth
and competitiveness, that not discouraging the necessary investments should
be among regulators’ primary concerns.
Regulators thus need to manage a trade-off between the two objectives of

static and dynamic efficiency, which are often conflicting. While regulation
for static efficiency aims to reduce market power based on existing infras-
tructure, it also reduces the rents on future investment. Hence, regulators
face the difficult task of determining how to encourage networks to invest
optimally without lessening competitive intensity.

In recent years, telecommunications markets have seen high rates of tech-
nological progress. Several substitutes for existing copper networks have been
developed, all allowing the creation of new broadband services: bi-directional
cable networks, fixed wireless local loops (FWA or WiMax), and upgraded
cellular mobile networks. Most of these alternatives continue to involve large
sunk costs and economies of scale, which makes it difficult for many firms to
invest immediately.
One of the instruments used by regulators to reduce the temporary monopoly

power of existing networks is to force them to give access. The idea is that
rivals can first compete as service-based competitors, before they build their
own networks and turn into facility-based competitors. This regulatory in-
strument has gained an important role since it started to be promoted more
strongly in the United States after 1996 with the Telecommunications Act
and in the European Union after the 1998 liberalization, especially in the form
of the “unbundling of the local loop”. According to the European Commis-
sion, service-based competition is a pre-requisite to have future facility-based
competition. The achievement of the latter is desirable since it creates a high
scope for product differentiation and innovation.
The issue of access regulation and investment is particularly important

in the context of the Lisbon strategy. For example, in 2006 there was a
dispute between the European Commission on the one hand, and the German
telecoms regulator and Deutsche Telekom on the other, about mandating
access to the VDSL network that Deutsche Telekom plans to build in fifty
German cities. Deutsche Telekom claimed the right to an access holiday to
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this future network, and the regulator offered its support. The European
Commission counter-argued that ex-ante regulation had to be extended also
to this network, since the lack of competition in the German market could
lead to the re-emergence of monopoly.

The academic literature on the relationship between access regulation
and investment has started to address these concerns only recently. For
example, Valletti (2003) claimed that this type of problems had not been
studied sufficiently. However, he gives some clues towards understanding it
by relating the issue with questions common to the literature on R&D.
Bourreau and Dogan (2005) consider a model of infrastructure investment

in a telecommunications market with access regulation. One of the firms
already owns an infrastructure, and thus only the other firm must decide if
it wants to enter as a service-based or facility-based competitor. Therefore,
the regulator simply has the problem of setting an access price such that
the entrant duplicates at the socially optimal investment date. Bourreau
and Dogan (2003) consider a similar model but allow for the use of a time-
variant access price.
Gans (2001) considers a context similar to Katz and Shapiro (1987). Two

firms compete to invest in a new technology, and there will be only one
investment. In this case the regulator can induce the leader to invest at the
socially optimal date, for which he uses the access charge.
Woroch (2004) provides a formal model of a technology race among net-

work owners and service providers and studies the equilibrium broadband
deployment pattern, allowing for duplication. He finds the equilibrium in
terms of investment dates and analyzes the impact of mandatory access on
the investment pattern, as we do in our paper. However he does not con-
sider the presence of a regulator who maximizes social welfare as we do, and
therefore does not consider the choice of a socially optimal access tariff
Hori and Mizuno (2006) consider a similar model, but they assume a

stochastic growing demand instead of technical progress. In their model
payoffs are always symmetric, contrary to ours where they may be different
after investment (without discounting the access charge) depending on which
firm was the first to invest. Besides this, they only allow the use of a usage
charge. They obtain an equilibrium in a preemption equilibrium and conclude
that the incentive for preemption can be enhanced by an increase in the access
tariff.

Our model is based on the literature on technology adoption. The under-
lying assumption in all models is that investment cost declines over time, for
example due to technical progress. The game is one of timing of investment,
i.e. firms’ only choices are their respective investment dates.
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In Fudenberg and Tirole (1985) two or more firms adopt a new technology.
Since they assume that it is better to be the first to adopt, the equilibrium
outcome in the duopoly case is either preemption or joint adoption, both
with rent equalization.
Katz and Shapiro (1987) consider a similar model where only one firm

adopts and then offers a licence to the other firm. They show that preemption
or waiting may occur in equilibrium. The waiting equilibrium arises due to
a second-mover advantage, and the follower has a higher firm value.
Riordan (1992) considers the effects of regulation of entry and retail prices

when both firms can adopt. Since the follower cannot access the first network
access pricing is not an issue. Still, in spirit his paper is closest to ours in
that it analyses how regulation affects investment dates.
Hoppe and Lehmann-Grube (2005) show how equilibria can be analyzed

if the leader’s profit as a function of its investment date has multiple local
maxima or is discontinuous.

In our model there are two firms that intend to operate in a market,
and new infrastructure must be built to allow these firms to offer services.
Investment costs decline over time because of technological progress, and the
construction of a second network, bypassing the first one, will be viable and
socially desirable at some point in time. The second firm (the “follower”) can
access its rival’s (the “leader’s”) infrastructure at a regulated two-part access
tariff before it builds its own network. The follower’s choice of investment
will depend on the conditions of access.
More importantly, firms generally have two incentives for the first invest-

ment, a stand-alone incentive and a preemption incentive. The stand-alone
incentive stems directly from the increase in profits after investment. In the
absence of strategic effects, firms would choose investment timing by trading
off earlier gains in profit against lower investment costs later on. The second
incentive to invest is related to the advantage of being the first to invest. In
fact, if a firm does not invest, a rival firm may do so and become the common
provider. If being a leader is more profitable than being a follower, each firm
has incentives to preempt the other firm’s investment. If, on the contrary,
being a follower is more profitable, both firms only have the stand-alone
incentive to invest, and there is no race to become the leader.
We first determine the equilibrium in terms of investment patterns. In-

deed, two types of equilibria are possible, preemption if there is a first-mover
advantage caused by a high access charge, and waiting if there is a second-
mover advantage due to a low access charge. In the preemption equilibrium
the leader invests at the preemption date, while in the waiting equilibrium
it invests at its stand-alone investment date. The follower always invests at
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its stand-alone investment date.
Both the leader’s investment in a waiting equilibrium, and the follower’s

investment in both types of equilibria, occur earlier with a higher access
charge. This happens because the stand-alone incentives to invest increase
with the access charge. Yet, contrary to Hori and Mizuno (2006), the effect
of the access charge on the leader’s investment decision in a preemption
equilibrium is ambiguous. Besides strengthening the stand-alone incentive,
a higher access charge makes being the follower less attractive and therefore
strengthens the preemption motive. On the other hand, since the follower
invests earlier, the duration of service-based competition will be shorter,
which lowers the returns on the first investment. This second effect may be
stronger than the first two, and investment is delayed.
In a third step the regulator maximizes social welfare using the access

tariff. Socially optimal investment by both leader and follower cannot be
achieved with a time-invariant access tariff. This is intuitive since one reg-
ulatory instrument normally cannot achieve two independent goals. On the
other hand, simply lowering or raising the access charge to a different level
at some point in time may not lead to the social optimum, either, and paths
involving more steps may be necessary. Furthermore, the optimal path may
be either increasing or decreasing, depending on whether the follower has
incentives to invest too early. The first best may not be achievable even with
arbitrary access price paths if the follower’s private incentives for investment
are much stronger than its overall effect on welfare.
Finally, we extend our model to the case where duplication is either not

socially or privately desirable. We show that our previous conclusions con-
tinue to hold. As a second extension, we show that access holidays can have
two functions: Encourage investment when profits under competition are not
enough; and help to achieve first-best investment when the follower invests
too early.

The remainder of the paper is organized as follows. We describe the model
in Section 2. In Sections 3 and 4 we obtain the equilibrium investment timing
for both firms and analyze the impact of the access tariff. In Sections 5 and
6 we find the socially optimal investment timing and solve the regulator’s
problem. In Section 7 we consider some extensions, and in Section 8 we
conclude.
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2 The Model

We introduce a model where two firms, say firms A and B, compete for the
construction of network infrastructure that allows them to offer new services.
After one firm has built the infrastructure, it must give access to its rival at
a regulated price. The regulator sets a two-part access tariff which consists
of a usage charge a and an access charge P ≥ 0. These are set ex-ante, i.e.,
when firms invest the access rules are already defined and known to both.
Here we only analyze the aspects concerning dynamic efficiency, assum-

ing that the regulator has full information about the firms’ technology and
payoffs. Therefore, we assume that the usage charge a is used to maximize
static efficiency, as in Gans (2001). Hence, we can think of the access tariff
as just an access charge, and concentrate on its optimal choice.

The two firms that can build the infrastructure know that if a firm “wins”
in the provision of the infrastructure it becomes the common provider, and
if it “loses” it either pays for access or builds a bypass network. This setup
can create a first-mover advantage which stimulates a preemption process.
However, there may also be a second-mover advantage which will lead to a
game where preemption does not occur. This second case arises since the
follower benefits from the first investment through access and then invests
later when technological progress has brought down costs.
Depending on the pattern of infrastructure investment, there are different

market structures over time. When only one firm has invested, it must give
access to the rival, and there is service-based competition. When both firms
have invested, we have facility-based competition. Each firm’s profit at a
given point in time only depends on the investment pattern up to this date.

Firms’ payoffs
We assume that firms are ex-ante symmetric, and that time is continuous.

Hence, at the beginning of the game, when neither of the firms has invested,
each earns flow profits of π0. When one firm has invested and gives access,
it obtains the leader’s flow profit π1L + P . If the follower asks for access
it receives π1F − P per period, and otherwise zero. Thus, under service-
base competition the follower obtains π̃1F (P ) = max {π1F − P, 0}, while the
leader’s profits are:

π̃1L (P ) =

½
π1L + P if P ≤ π1F
π1M if P > π1F

, (1)

where π1M is the monopoly profit. We assume:

π1F ≥ 0, (2)

π1M ≥ π1L + π1F . (3)
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Since profits do not depend on P if P > π1F , the relevant range for P is
the interval [0, π1F ], which is not empty by assumption (2). It follows that
π̃1L (P ) ≤ π1M .
When both firms have invested, the leader’s flow profit is π2L and the

follower’s is π2F , with:

∆2 = π2L − π2F ≥ 0. (4)

Investment cost
Each infrastructure is built at a single moment, and the investment cost

is decreasing over time due to technological progress. We also assume that
firms hold on to the technology indefinitely once they have invested, and that
the infrastructure does not deteriorate over time. This allows us to avoid the
issue of re-investment. Current investment cost at time T is C (T ), which
we assume to be a positive, decreasing and convex, and twice continuously
differentiable function:1

C (T ) > 0, C 0 (T ) < 0, C 00 (T ) > 0 ∀T ∈ R. (5)

This implies that limT→∞C (T ) = C ≥ 0 and limT→∞C 0 (T ) = 0. Let the
discount rate be δ > 0. We assume that both the leader and the follower
would want to invest in finite time. There are decreasing returns to invest-
ment, in the sense that the increase in the leader’s flow profits exceeds the
follower’s:

π1L − π0 > π2F − π1F > δC. (6)

Later, when we analyze a context where a bypass investment is may not be
desirable, we allow C to be higher. Investment cost discounted to time zero
is A (T ) = C (T ) e−δT , which is decreasing in T and converges to zero.
To rule out immediate investment, we assume that investment at time

zero leads to losses:

δC (0) > max {π1M , π2L} . (7)

Since A0 (0) = C 0 (0)− δC (0) and A (0) = C (0), we have −A0 (0) > δA (0).

Firms’ strategies
1We extend the definition of investment cost to dates before zero in order to simplify

the exposition below.
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Each firm plays a Markov strategy that is a function of time T, the access
tariff P , and whether its rival has already invested or not. For each firm, the
only decision to be made is when to make a unique investment.
Since time is continuous in this model we need to take care of the co-

ordination problem identified by Simon and Stinchcombe (1989), i.e. the
possibility of having both firms adopt at the same time but regretting this
action afterwards. We follow the literature by assuming that firms move al-
ternatingly on a fine discrete time grid, and consider the equilibria as grid
size goes to zero. As a result, only one firm invests at any point in time.2

3 Investment Timing

Let us start to examine what happens when one of the firms, say firm i,
has invested at some time Ti. In this case we need to solve the follower’s
investment problem in the continuation game.
Given the leader’s investment at Ti and the access tariff, the discounted

payoff of the follower investing at Tj ≥ Ti is:

F̃ (Ti, Tj, P ) =

TiZ
0

π0e
−δtdt+

TjZ
Ti

π̃1F (P ) e
−δtdt+

∞Z
Tj

π2Fe
−δtdt−A (Tj) (8)

=
1− e−δTi

δ
π0 +

e−δTi − e−δTj

δ
π̃1F (P ) +

e−δTj

δ
π2F −A (Tj) .

Before Ti no firm has invested, and profits are π0. Between Ti and Tj, there
is a period of service-based competition. After duplication, both firms offer
their services through their own infrastructure, and we end up in facility-
based competition.
Now we can determine the follower’s optimal investment date. First de-

fine, for all T ∈ R,
Z (T ) = −A0 (T ) eδT = δC (T )− C 0 (T ) . (9)

This is a continuously differentiable and strictly decreasing function, with
limT→−∞ Z (T ) = +∞ and limT→+∞Z (T ) = δC.

The only incentive for investment that influences the follower’s decision is
the stand-alone incentive. He weighs the benefit of higher payoffs of investing

2Fudenberg and Tirole (1989) note there may exist equilibria involving a positive prob-
ability of coordination failure in discrete-time games. Hence one needs to make an as-
sumption that excludes this possibility. There are several other alternatives, such as a
randomization device as in Katz and Shapiro (1997).
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today against the cost savings of delaying investment. There is no preemption
motive since its rival has already invested.

Proposition 1 Given the access price P and the leader’s investment date
Ti ≥ 0, the follower invests at:

TF (Ti, P ) = max
©
TF1 (P ) , Ti

ª
, (10)

where TF1 (P ) = Z−1 (π2F − π̃1F (P )) > 0.

Proof. The follower solves

max
Tj≥Ti

½
π2F − π̃1F (P )

δ
e−δTj −A (Tj)

¾
,

with first-order condition:

π2F − π̃1F (P ) = −A0 (Tj) eδTj = Z (Tj) .

By assumption (6) the left-hand side is larger than δC, and by assumptions
(4) and (7) we have:

π2F − π̃1F (P ) ≤ π2L < −A0 (0) = Z (0) .

Thus TF1 (P ) = Z−1 (π2F − π̃1F (P )) is well-defined, unique and positive.
The second derivative of profits is3

∂2F̃
¡
Ti, T

F1, P
¢

∂T 2j
= δ (π2 − π̃1F (P )) e

−δTF1 −A00
¡
TF1

¢
= Z 0

¡
TF1

¢
e−δT

F1

< 0,

hence we have a maximum. If TF1 (P ) ≤ Ti then the optimal choice is to
invest at Tj = Ti, otherwise it is at Tj = TF1 (P ) > Ti.

Denote the follower’s profits at its optimal investment date as F (Ti, P ) =
F̃
¡
Ti, T

F (Ti, P ) , P
¢
. Note that TF1 (P ), TF (Ti, P ) and F (Ti, P ) are contin-

uous functions, and that F (Ti, P ) is positive for all Ti ≥ 0 and P ∈ [0, π1F ].
Note also that for all Ti ∈

£
0, TF1 (P )

¤
, F (Ti, P ) is increasing in Ti if

π0 > π̃1F (P ) and decreasing otherwise. Since in this case the follower’s
investment date does not depend on Ti, if the follower’s flow profit decreases

3Below we omit second-order conditions since they hold and are similar to the present
one.

8



after the leader’s investment its discounted payoff increases if the leader in-
vests later.

Now that we have determined the follower’s choice in the continuation
game, we can define the discounted payoff of a leader investing at Ti as
L (Ti, P ) = L̃

¡
Ti, T

F (Ti, P ) , P
¢
, where

L̃ (Ti, Tj, P ) =
1− e−δTi

δ
π0 +

e−δTi − e−δTj

δ
π̃1L (P ) +

e−δTj

δ
π2L −A (Ti) .

(11)

We first determine the leader’s stand-alone investment date TS (P ). Given
that one firm must be the leader, the first investment will not occur after this
date. Preemption before this date will occur depending on whether there is a
first- or a second-mover advantage. We will see that there is a second-mover
advantage if the follower’s discounted payoff is higher than the leader’s at
TS (P ).

Proposition 2 Given the access price P , the leader’s stand-alone invest-
ment date TS (P ) is at T S1 (P ) if π2L ≥ π0+ π2F − π̃1F (P ), while otherwise
it is at either T S1 (P ) or T S2 > TF1 (P ), with

TS1 (P ) = Z−1 (π̃1L (P )− π0) ∈
¡
0, TF1 (P )

¢
,

T S2 = Z−1 (π2L − π0) .

Proof. See Appendix A.

There may exist two local maxima in the leader’s discounted payoff, as
has already been pointed out in Fudenberg and Tirole (1985) in a similar
context. The first one, TS1 (P ), and which always exists, occurs before the
follower’s investment date TF1 (P ), and thus leads to a period of service-based
competition. The second local maximum at T S2 only arises when either π2L is
low or P is high, and leads to immediate bypass by the follower. In this case,
there is no period of service-based competition. In both cases L

¡
TS (P ) , P

¢
is positive, but when its second local maximum exists we cannot determine
the location of its global maximum. 4

4Fudenberg and Tirole (1985) show that any one of the two local maxima can be the
global maximum. They argue that L

¡
TL1

¢
> L

¡
TL2

¢
is typical of new markets, where

the profit after the investment in the infrastructure increases strongly. The opposite case
L
¡
TL1

¢
< L

¡
TL2

¢
arises when the first investment simply transfers profit from the leader

to the follower.
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In equilibrium the leader may not invest at TS (P ), since for high values
of P the threat of preemption will induce investment at an earlier date.
Indeed, whenever L (Ti, P ) > F (Ti, P ) there is a first-mover advantage: The
discounted payoffs of becoming a leader are strictly higher than the payoff
of becoming a follower. In this case firms will compete to be leaders, each
trying to invest slightly earlier that its rival. In equilibrium, one firm invests
at the preemption date TR (P ), which is the earliest date where that firms are
indifferent between being a leader or a follower, and the other firm invests
later. The following Proposition shows that the preemption date is well-
defined:

Proposition 3 Given the access price P , there is a unique date TR (P ) ∈¡
0, TF1 (P )

¤
such that for all Ti ∈

£
0, TF1 (P )

¢
we have L (Ti, P ) Q F (Ti, P )

if Ti Q TR (P ).

Proof. See Appendix B.

Now we need to establish whether or not preemption will arise. The
decisive factor is which of the two dates occurs earlier, the preemption or the
stand-alone investment date. The following results are similar to Katz and
Shapiro (1987), Riordan (1992) and Hoppe and Lehmann-Grube (2005).

Proposition 4 For all P ∈ [0, π1F ], in subgame-perfect equilibrium the fol-
lower invests at eTF (P ) = TF1 (P ), and the leader’s investment eTL (P ) <eTF (P ) falls into two cases:
i) Preemption: If TR (P ) < T S (P ), the leader invests at eTL (P ) =

TR (P ).
ii) Waiting: If TR (P ) ≥ T S (P ) the leader invests at eTL (P ) = T S1 (P ).
This outcome is unique up to relabeling of firms.

Proof. Similar to the proof of Theorem 1 in Hoppe and Lehmann-Grube
(2005). Note that in our model L (Ti, P ) − F (Ti, P ) = e−δTi ∆2

δ
≥ 0 for all

Ti ≥ TF1 (P ), thus we do not need to restrict F to be non-increasing to
obtain a unique outcome. Joint adoption equilibria, where both firms adopt
at the same date T > TF1 (P ), are ruled out following the arguments in
Riordan (1992).
We now plot the leader’s and follower’s payoffs as functions of the leader’s

investment date in order to explain the intuition of this result. We have two
cases, depending on whether the follower’s payoff is increasing (Figures 1 and
2) or decreasing (Figures 3 and 4) until TF1 (P ).5

5All these 4 figures are represented assuming that π2L > π2F . If π2L = π2F we would
have L (Ti, P ) = F (Ti, P ) after TF1 (P ) in all 4 figures.
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The follower’s payoff F (Ti, P ) is (weakly) increasing in Ti < TF1 (P ) if
π0 ≥ π̃1F (P ), or P ≥ PH = π1F − π0, i.e. at the access price P the follower
is worse off than before the leader’s investment. In this case we have

L
¡
T S1 (P )

¢
> L

¡
TF1 (P )

¢ ≥ F
¡
TF1 (P )

¢ ≥ F
¡
TS1 (P )

¢
, (12)

and there is a first-mover advantage. The equilibrium outcome is preemption
at TR (P ) because any attempt to wait with investment until some later date
will be met with slightly earlier investment.
There are two sub-cases, depending on the leader’s global maximum. In

Figure 1 there is only one local maximum in the leader’s payoff function,
i.e. P ≤ PH + ∆2, while in Figure 2 we have P > PH + ∆2 and a second
local maximum. If one does not view the equilibria of the game as limits on a
discrete time grid, then if the second maximum is high enough joint adoption
equilibria just before T S2 may arise, see Fudenberg and Tirole (1985).

Figure 1 Figure 2

On the other hand, F (Ti, P ) is decreasing in Ti < TF1 (P ) if P < PH .
The leader’s payoff has only one local maximum, but now the outcome may
be waiting or preemption. If L

¡
T S1 (P )

¢
> F

¡
T S1 (P )

¢
, as in Figure 3, then

again there is a first-mover advantage and the outcome is preemption. On
the other hand, if L

¡
TS1 (P )

¢
< F

¡
T S1 (P )

¢
as in Figure 4 then there is a

second-mover advantage, and we have a waiting equilibrium.
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Figure 3 Figure 4

While being a known result in technology adoption games, the possibility
of a waiting equilibrium is a novelty for models of access regulation. In fact,
the existing literature generally obtains a simple preemption equilibrium.

4 Effects of the Access Tariff

We can now determine the effect of the access tariff on the leader’s and
follower’s investment dates.

Proposition 5 If the access charge P < π1F increases, the follower invests
earlier.

Proof. From Proposition 1, ∂TF1

∂P
= (Z−1)0 (π2F − π1F + P ) < 0.

With a higher access tariff, the follower makes fewer profits prior to its
investment and, as a result, it invests earlier. Since P = π1F leads to the same
outcome as no access at all, mandatory access at P < π1F always delays the
follower’s investment as compared to the situation without access. As we will
see below, similar to Riordan (1992) the effect of delay on welfare depends
on the socially optimal second investment date.

With respect to the leader’s decision, we need to analyze what happens
when it waits or preempts.

Proposition 6 In a waiting equilibrium, a higher access charge P < π1F
makes the leader invest earlier. In the preemption equilibrium, with a higher
access charge P < π1F the leader invests earlier (later) if

∂(L−F )
∂P

¯̄̄
Ti=TR(P )

>

(<) 0.
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Proof. From Proposition 2, ∂TS1

∂P
= (Z−1)0 (π1L + P − π0) < 0.

The leader’s preemption investment date is determined by the condition
L(TR (P ) , P ) = F (TR (P ) , P ) with L cutting F from below. Hence, we
know that at TR (P ) we have ∂(L−F )

∂Ti
> 0. By the Implicit Function Theorem,

dTR(P )
dP

= −∂(L−F )
∂P

.
∂(L−F )
∂Ti

. Therefore the stated result follows.

The result for the preemption equilibrium depends on whether an increase
in the access price benefits or hurts the leader. In order to understand the
effects involved, consider

∂ (L− F )

∂P

¯̄̄̄
Ti=TR(P )

=
2

δ

³
e−δT

R(P ) − e−δT
F1(P )

´
(13)

+ e−δT
F1(P )

µ
−dT

F1 (P )

dP

¶
[π2L − π̃1L (P )] .

The first term describes the direct effect on the difference in flow profits
during service-based competition. A higher access price benefits the leader
and hurts the follower, thus increasing the incentives for preemption. The
second effect, however, an indirect effect caused by the anticipation of the
follower’s investment, may go both ways. If the leader’s profits increase after
duplication, i.e. π2L > π̃1L (P ), then earlier duplication again benefits the
leader, and higher P indeed makes the leader invest earlier. On the other
hand, if after duplication its profits decrease substantially, the total effect
may become negative. As a result, the returns from the first investment
decrease, and the leader delays investment.

We still need to determine for which values of P we have a waiting or
preemption equilibrium. As we have seen, for P ≥ PH we definitely have
preemption, thus without the provision of access we would always obtain
preemption. For P < PH we may have a preemption or waiting equilibrium,
depending on whether TR (P ) is smaller or larger than T S1 (P ). For our
generic investment cost function, there may be none, one, or more than one
P̂ ∈ (0, PH) with TR

³
P̂
´
= T S1

³
P̂
´
, which are the values of the access

price for which we have transitions between both types of equilibria. As we
will show in the next section, since the leader will only invest at the socially
optimal date if the regulator induces a preemption equilibrium, this possible
multiplicity of transitions between waiting and preemption equilibria poses
no problem.
For completeness, we discuss briefly the possible cases. If there is no

transition then we always have preemption. If there is one transition then
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we have a second-mover advantage when the access charge is low and a first-
mover advantage for high P , i.e., there is a waiting equilibrium for P ∈

h
0, P̂

i
and preemption for

³
P̂ , π1F

i
. The leader’s investment date is a continuous

function of the access price:

T̃L (P ) =

½
T S1 (P ) if 0 ≤ P ≤ P̂

TR (P ) if P̂ < P ≤ π1F
. (14)

This function decreases on the first branch, but may be increasing for high
P > π2L − π1L on the second branch.
On the other hand, there may be more than one P such that TR (P ) =

TS1 (P ). The reason is that both the stand-alone and preemption investment
dates may decrease in parallel with a higher access price. In fact, if P in-
creases we have a transition from a waiting to a preemption equilibrium if
and only if TR (P ) falls below TS1 (P ), i.e. if

dT S1 (P )

dP

¯̄̄̄
TR=TS1

− dTR (P )

dP

¯̄̄̄
TR=TS1

> 0.

The first term is always negative, pointing towards a transition to wait-
ing, while the second term can be either positive or negative. We can sign
the whole expression unambiguously only in the case where a higher access
charge delays preemptive investment, which forces a transition to a waiting
equilibrium.

5 Socially Optimal Investment Timing

Social welfare is defined as the present value of the intertemporal stream of
social benefits (profits and consumer surplus) minus discounted investment
costs. Let S0 be consumer surplus per period when neither firm has invested.
S1 is consumer surplus per period when one firm has invested in a new
infrastructure, and the other has access to it. S2 is consumer surplus per
period when both firms have invested. Note that S1 is independent of P
since it is a lump-sum payment from the follower to the leader. We assume
that consumer surplus does not decrease after the first investment:

S1 ≥ S0. (15)

Total surplus per period for each of the three cases is:

w0 = 2π0 + S0

w1 = π1L + π1F + S1 (16)

w2 = π2L + π2F + S2.

14



We assume that total surplus (before investment cost) increases with both
investments, and that both eventually are socially desirable, though only
after date zero. Furthermore, we assume that total welfare increases more
with the first investment than with the second one:

Z (0) > w1 − w0 > w2 − w1 > δC. (17)

Note that this assumption does not follow from the previous ones, because
it also includes the possible reductions in payoffs by the firm which does not
invest.
With investment dates TL ≤ TF , net social welfare is given by:

W (TL, TF ) =
¡
1− e−δTL

¢ w0
δ
+
¡
e−δTL − e−δTF

¢ w1
δ

(18)

+ e−δTF
w2
δ
−A (TL)−A(TF ).

The socially optimal investment dates are easily characterized:

Proposition 7 Socially optimal investment occurs at dates Tw
F > Tw

L > 0,
with

Tw
F = Z−1 (w2 − w1) , Tw

L = Z−1 (w1 − w0) . (19)

Proof. The regulator maximizes W over TL ≤ TF , with first-order con-
ditions

w1 − w0 = Z (Tw
L ) ,

w2 − w1 = Z (Tw
F ) .

The left hand sides of both conditions are larger than δC by assumption
(17). Thus Tw

L = Z−1 (w1 − w0) and Tw
F = Z−1 (w2 − w1) are well defined

and unique. Assumption (17) also guarantees that Tw
L > 0 and Tw

L < Tw
F .

6 Optimal Regulation

Having determined the socially optimal investment dates, we now consider
how a regulator can induce a socially optimal investment pattern using ex
ante regulation.
For a start, we find the access charge such that each firm invests at the

corresponding socially optimal date.

Proposition 8 The follower invests at the socially optimal date with the
access price P ∗F ≡ S2 − S1 + π2L − π1L if 0 ≤ P ∗F ≤ π1F .
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Proof. Immediate from TF1 (P ∗F ) = Tw
F .

When a follower invests, it changes its payoff but also consumer surplus
and the leader’s payoff. However, in its decision it does not take the latter
into account. Hence, we need to make him internalize these effects through
the access charge. Note that the higher are the consumer and leader’s gains
from duplication, the earlier is the socially optimal bypass investment date.
On the other hand, if duplication reduces the leader’s payoff then the follower
should invest later than the mere consideration of consumer surplus would
imply.

Proposition 9 Let P ∗L be a solution of T
R (P ∗L) = Tw

L . If 0 ≤ P ∗L ≤ π1F , then
the leader invests at the socially optimal date. This access charge results in
preemption, while socially optimal investment by the leader cannot be achieved
through a waiting equilibrium.

Proof. Suppose P is such that we have a waiting equilibrium, which
implies P < PH . If Tw

L ≥ TS1 (P ) then by definition of these two dates
P ≥ PH + S1 − S0, which contradicts P < PH by (15). Therefore for this
P we have Tw

L < TS1 (P ). In other words, if there is to be socially optimal
investment by the leader it must be in a preemption equilibrium.

The leader always invests too late in waiting equilibria, because it con-
siders only its private gains. As a result, the regulator needs to induce a pre-
emption equilibrium, using an access price that is high enough, if he wants
to achieve socially optimal investment by the leader.
If P is low enough then TR (P ) is still decreasing in P , and higher gains

in consumer surplus from investments make the regulator choose a higher
access price. On the other hand, if P is already too high that any increase
delays investment, then P should be lowered.

Now let us assume that both P ∗L and P ∗F belong to the interval [0, π1F ] ,
similar to Gans (2001), while we leave open which of the two is larger. Con-
trary to the latter paper, where a two-part tariff achieves socially optimal
investment, in our model the regulator generically cannot achieve socially
optimal investment by both firms using one access price. In fact, he only has
one instrument and two objectives. Hence, the second-best constant access
charge P so ∈ argmaxP W

¡
TR (P ) , TF1 (P )

¢
is somewhere between P ∗L and

P ∗F , with one firm investing too early and the other too late as compared to
the first best.

A further problem is that this second-best access charge lacks time con-
sistency. If the regulator does not commit to this price, and revises it after
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the leader’s investment, he would change it to P ∗F . If the leader foresees this
it would invest at T̃L (P ∗F ), and ex ante welfare would be lower.

Given that in our model access is priced using a two-part tariff, if the
regulator only aims for dynamic efficiency and ignores static efficiency, he can
use the usage charge a as an instrument to induce to a first-best investment
pattern with a time-consistent access charge P . He must choose ea such that
P ∗L (ea) = P ∗F (ea). Unfortunately, there is no simpler or explicit condition
describing this level of usage charge.
According to De Bijl and Peitz (2004), with full participation and inelas-

tic demand static welfare is independent of the usage charge. In this case,
the increase in the usage charge is totally passed on to consumers by the
follower, while the leader takes all the benefits from this increase. This im-
plies that a regulator has some freedom to set the usage charge for dynamic
objectives. However, for new services, we do not have full participation, and
thus there will be a usage charge which maximizes static welfare. In this
case, a regulator has to sacrifice static welfare if he wants to use the usage
charge for dynamic objectives.

Hori and Mizuno (2004) show that if the regulator were to use explicit
taxes and subsidies he could obtain the first best, because with these instru-
ments he can further adjust both firms’ payoffs. However, this option incurs
the inefficiency costs associated with the use of subsidies and taxes.

We now suggest how the first best can be achieved through a time-variant
access charge. This problem is not trivial, since the path of charges, which
the regulator naturally must commit to, must be chosen such that forward-
looking firms have the incentives to invest at the correct dates knowing that
access prices will change.
In principle, the path of access charges could define a different value for

each moment in time, resulting in an infinite number of instruments. On the
other hand, contrary to what might be expected, we will show below that
depending on the value of P ∗F only two levels of access charges may or may
not be enough.
Define the path of access charges as a function P (T ) of time. Naturally,

as before access charges will be paid only during the interval of service-based
competition between the two investments.
Since the leader’s stand-alone investment date T S1 (P ) does not change

if the follower invests at Tw
F instead of TF1 (P ), the same argument as in

Proposition 9 applies, and efficient investment can only be achieved in a
preemption equilibrium.
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Proposition 10 Define P ∗∗L by L̃ (Tw
L , T

w
F , P

∗∗
L ) = F̃ (Tw

L , T
w
F , P

∗∗
L ), i.e.

P ∗∗L =
δ (A (Tw

L )−A (Tw
F ))−∆2e

−δTwF

2 (e−δTwL − e−δTwF )
− π1L − π1F

2
. (20)

If 0 ≤ P ∗∗L ≤ P ∗F , a path of access charges such that both firms invest at their
socially optimal dates is

P (T ) =

½
P ∗∗L if T < Tw

F

P ∗F if T ≥ Tw
F

(21)

Proof. At time T ≥ Tw
L the follower solves:

max
Tj≥T

TjZ
T

(π1F − P (t)) e−δtdt+
π2F
δ

e−δTj −A (Tj) .

Taking the first-order condition we obtain:

π1F − π2F − P ∗∗L + Z (Tj) > 0 for Tj < Tw
F

π1F − π2F − P ∗F + Z (Tj) < 0 for Tj > Tw
F

Hence, the follower invests at Tw
F , and since P

∗∗
L ≤ P ∗F ≤ π1F the follower

asks for access before Tw
F .

Since the leader receives P ∗∗L during the whole duration of service-based
competition, the first investment will occur at the socially optimal preemp-
tion date Tw

L .

The access price P ∗∗L induces preemption at the optimal first investment
date when firms know that the second investment will also occur optimally.
Thus the difference between P ∗L and P

∗∗
L is that the former supposes that the

second investment is at the non-optimal date TF1 (P ∗L).
Thus if P ∗∗L ≤ P ∗F the follower can be induced to invest at T

w
F simply by

raising the access price to P ∗F or higher, or even end access to the leader’s
network, at the date when investment is meant to occur. This result is similar
to Bourreau and Dogan (2003), where the regulator sets a time-variant access
price in order to guarantee both static efficiency and optimal investment
by the entrant. It also corresponds to the recommendation in Cave and
Vogelsang (2003) of access pricing that are increasing over time.

Still, if P ∗∗L > P ∗F then the above path of access charges does not lead to
the first best: the follower will invest too early at TF1 (P ∗∗L ). If the regulator
wants the follower to invest at Tw

F he needs to set access charges below P ∗∗L .
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However, a fixed charge at this level would not induce the leader to invest at
Tw
L .
The solution to the seeming contradiction follows from the observation

that, since investment cost decreases over time, the access price at which the
follower is indifferent between investing or not decreases over time. Thus it
is possible to set P above P ∗F without causing immediate investment, while
at the same time giving the leader the return that is necessary for optimal
investment. Higher payments right after Tw

L then compensate for lower pay-
ments closer to Tw

F . As before, at T
w
F the access charge can be set at P

∗
F .

Let us formalize this idea. Given P , the follower invests at a date T such
that T = Z−1 (π2F − π1F + P ). Hence, the follower is indifferent between in-
vesting or not if P = Z (T )−π2F+π1F , which is decreasing over time. We also
need P ≤ π1F , so that the follower asks for access. Thus, the upper limit on
the access charge at each T < Tw

F is P̃ (T ) = min {π1F , Z (T )− π2F + π1F} ,
which is represented in Figure 5.

Figure 5

If the regulator wants to induce the leader to invest at the optimal date
Tw
L , he needs to define a path of access charges P (T ) < P̃ (T ) on T ∈
(Tw

L , T
w
F ) such that at T

w
L the leader’s and follower’s payoffs coincide. This

happens if and only if the average discounted access payment is equal to P ∗∗L ,
or

δ

e−δTwL − e−δTwF

TwFZ
TwL

P (t) e−δtdt = P ∗∗L . (22)
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Thus achieving the first best is possible if either P ∗∗L ≤ P ∗F , or

TwFZ
TwL

P̃ (t) e−δtdt >
e−δT

w
L − e−δT

w
F

δ
P ∗∗L . (23)

In both cases the access price paths are time consistent because the follower
invests at the optimal date.
If condition (23) does not hold, then the access payments that are neces-

sary to achieve preemption at the optimal date are so high that they induce
the follower to invest too early. In this case not even an infinite number
of instruments can achieve the first best. This case arises if the follower’s
payoffs increase very strongly after duplication, while total surplus increases
little, i.e. the follower’s gains are mainly due to business stealing.

7 Extensions

7.1 Undesirable bypass

Until now we have assumed that a bypass investment is desirable both for
the follower and the regulator, see assumptions (6) and (17). In this section
we change both assumptions.

Case 1: Socially desirable but privately undesirable bypass
This situation corresponds to the following assumption:

w2 − w1 > δC > π2F − π1F (24)

Here the regulator would like to encourage the follower to invest. This he
can only achieve with a sufficiently high access charge:

P > P = δC − (π2F − π1F ) . (25)

For P > P the follower duplicates at some T < +∞, and for P ≤ P the
follower does not duplicate. By (24), we have:

P ∗F = (w2 − w1)− (π2F − π1F ) > P. (26)

That is, the regulator cannot only induce the follower to invest at all, but even
to invest at the optimal date. Therefore, both access price paths discussed
in the previous section lead to a socially optimal investment pattern.

Case 2: Socially undesirable bypass
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We continue to assume that the first investment is socially desirable, but
that the second one is not:

w1 − w0 > δC ≥ w2 − w1. (27)

Again, the stand-alone and optimal investment dates T S1 (P ) and Tw
L of the

leader remain the same. Thus the regulator needs to induce investment in
a preemption equilibrium, for example by choosing a constant access charge
P ∗L such that L̃ (T

w
L ,∞, P ∗L) = F̃ (Tw

L ,∞, P ∗L). This condition is equivalent to

P ∗L =
1

2

¡
δA (Tw

L ) e
δTwL − π1L + π1F

¢
. (28)

At this access charge the follower will not invest if π2F − π̃1F (P
∗
L) ≤ δC, i.e.

P ∗L ≤ δC−π2F +π1F . If P ∗L is larger than this value the regulator must adopt
a path of access charges that decreases over time, as in the previous section.

7.2 Access holidays

“Access holidays” consists of a fixed time period after the leader’s investment
during which the leader is not subject to mandatory access, see e.g. Gans
and King (2004). In our model the leader would earn the monopoly profit
π1M during this period. Since this is higher than π̃1L (P ) for all P at which
the follower asks for access, access holidays provide an additional means for
the regulator to make investment for the leader more attractive.
We have seen in Section 6, and also the previous one, that there may exist

an unresolvable conflict between the necessity of high access charges to make
the leader invest optimally, and low access charges to keep the follower from
investing too early, if the follower’s incentives to invest largely surpass the
social ones. Access holidays can help solve this problem, to some extent, by
raising the leader’s payoffs right after investment. This creates the possibility
to set lower access charges later.
Naturally, since the follower receives zero profits without access, it would

like to invest even earlier if the access holiday lasts too long. More precisely,
it would invest at any T such that P̃ (T ) ≤ π1F , which is the access price at
which its profits in service-based competition are zero, too. Thus the access

holidays must end before the date
³
P̃
´−1

(π1F ). This limits the additional
profits that can be given to the leader.
There is an additional downside, however: The regulator is sacrificing

static welfare in order to induce investments closer to the optimal dates.
Thus the optimum would involve a trade-off between the two, and the first
best cannot be achieved.
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A second function for access holidays arises where investment by the
leader is not privately desirable even under high access charges, but would
be so under monopoly:

π1M − π0 > δC > π1L + π1F .

If we assume that in this case a second investment will not occur, the regula-
tor can increase the leader’s returns from investment by either increasing the
length of the access holidays or the value of the access charge. The former
comes at the cost of lower consumer surplus, while the latter has no welfare
cost with a two-part access tariff. The optimal outcome would then involve
an access price at the upper limit π1F , and an access holiday of the minimal
length necessary to make the leader invest optimally.

8 Conclusions

This paper demonstrates how mandatory access influences the investment
dates of two firms that want to build new infrastructures. As known from
the literature on technology adoption, there are two types of equilibria. In
the first type there is a first-mover advantage, and firms preempt each other.
In the second type there is a second-mover advantage, leading to a waiting
equilibrium. We show that in the context of access pricing, low access charges
may lead to waiting, while high access charges lead to preemption.
While higher access charges make the follower invest earlier, and also the

leader in a waiting equilibrium, its effects are ambiguous under preemption.
If the stand-alone incentives for investment are strong enough then also under
preemption the leader’s investment will occur earlier. If on the other hand the
reduction in payoffs caused by the anticipation of the follower’s investment
is the determinant factor, then the leader’s investment will be delayed by a
higher access charge.
Since the regulator needs to induce two firms to invest optimally, the

first best cannot be achieved with a constant access charge. We show that,
depending on the circumstances, an increasing path with only two values,
or a decreasing path with possibly many more values, may lead to first-best
investment. Still, even with a continuously changing access charge path the
first best may not be achievable if the follower’s private incentives are domi-
nated by business-stealing. We show that the introduction of access holidays
can alleviate this problem, apart from their more usual role of encouraging
the leader’s investment. Finally, no essentially new problems arise if bypass
needs to be elicited by the regulator, or if no bypass investment occurs at all.
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Appendix A

Given the investment decision of the follower, the leader solves

max
Ti

(
π̃1L(P )−π0

δ
e−δTi −A (Ti) +

h
π0
δ
+ π2L−π̃1L(P )

δ
e−δT

F1(P )
i
if 0 ≤ Ti < TF1 (P )

π2L−π0
δ

e−δTi −A (Ti) +
π0
δ

if Ti ≥ TF1 (P )

Profits are continuous at Ti = TF1 (P ). On the branch Ti < TF1 (P ), the
first-order condition for an interior maximum is Z (Ti) = π̃1L (P ) − π0. By
assumptions (3) and (6), the following inequalities hold:

P ≤ π1F : π1L + P − π0 > π2F − (π1F − P ) ,

P > π1F : π1M − π0 ≥ π1L + π1F − π0 > π2F .

Thus π̃1L (P ) − π0 > π2F − π̃1F (P ) and T S1 (P ) = Z−1 (π̃1L (P )− π0) <
TF1 (P ). Furthermore TS1 (P ) > 0 because by assumption (7) we have
π̃1L (P )− π0 < π1M < Z (0). Therefore, on the first branch there is a unique
interior maximum at TS1 (P ), and profits on the first branch are decreasing
at Ti = TF1 (P ).
As concerns the second branch, the first-order condition for an interior

maximum is Z (Ti) = π2L − π0, with solution TS2 = Z−1 (π2L − π0). If
π2L ≥ π0 + π2F − π̃1F (P ) then TS2 ≤ TF1 (P ), and the maximum on the
second branch is at TF1 (P ), where it is dominated by TS1 (P ). If on the
other hand π2L < π0 + π2F − π̃1F (P ) then T S2 > TF1 (P ), and we cannot
decide whether the global maximum is at T S1 (P ) or T S2.

Appendix B
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We have

L (Ti, P )− F (Ti, P ) =
³
e−δTi − e−δT

F (Ti,P )
´ π̃1L (P )− π̃1F (P )

δ

+ e−δT
F (Ti,P )

∆2

δ
−A (Ti) +A

¡
TF (Ti,P )

¢
,

which is continuous by continuity of L (Ti, P ) and F (Ti, P ). Since T
F(TF1(P ),P) =

TF1 (P ),

L
¡
TF1 (P ) , P

¢− F
¡
TF1 (P ) , P

¢
= e−δT

F1(P )∆2

δ
≥ 0,

by assumption (4). We also find that L (0, P ) < F (0, P ) ∀P ∈ [0, π1F ]
since F (0, P ) ≥ 0 and by assumption (7) L (0, P ) < 0. Thus there is a
TR (P ) ∈ ¡0, TF1 (P )

¤
such that L

¡
TR (P ) , P

¢
= F

¡
TR (P ) , P

¢
. We will

now show that there is at most one such date with L (Ti, P ) < F (Ti, P ) for
all Ti ∈

£
0, TR (P )

¢
, and L (Ti, P ) > F (Ti, P ) for all Ti ∈

¡
TR (P ) , TF1 (P )

¢
.

Maximizing or minimizingL−F with respect to Ti in the interval
£
0, TF1 (P )

¤
,

we obtain the first-order condition

∂ (L− F )

∂Ti
= e−δTi (π̃1F (P )− π̃1L (P ))−A0 (Ti) = 0.

Whenever it holds,

∂2 (L− F )

∂T 2i
= −δe−δTi (π̃1F (P )− π̃1L (P ))−A

00
(Ti)

= −δA0 (Ti)−A
00
(Ti)

= Z 0 (Ti) e−δTi < 0,

so that (L− F ) is strictly quasi-concave on
£
0, TF1 (P )

¤
. This implies that

L− F cuts the horizontal axis from below exactly once, and that any addi-
tional cut from above occurs only at TF1 (P ) and if π2L = π2F (In this case
we have L = F also at TF1 (P ), but this does not upset the statement).
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