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Abstract

Stock and Watson (1998 and 1999) developed a factor-model approach which allows

for large data sets to be systematically summarized by to a few explanatory factors.

In this paper two other methods are proposed. The first one, Partial Least Squares is

imported from the Chemometrics literature. The second one, which is based on the

Combination of Forecasts literature is a modification of Stock and Watson’s method.

We call it Principal Components Combination. These methods are compared in an

empirical application to inflation. It is found that overall the Principal Components

Combination performs the best.

Keywords: combination of forecasts; factor analysis; forecasting; inflation; partial

least squares; principal components

1 Introduction

With enormous amounts of new information, on several economic indicators, arriving in

real time, applied Macroeconomists have the problem of dealing with huge data sets, with

hundreds of explanatory variables that can be useful for forecasting purposes. Usually, we

have, at most, a few hundred observations, making the use of so many variables impossible

in a single regression model. Even with financial data, where much longer time series may

∗We are grateful to Nicholas Kiefer, Karl Shell, Yi Wen, and Mathis Schroeder for constructive discussions
and comments.
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easily be found, it is of dubious interest to consider hundreds of regressors. Nevertheless, it

is inefficient not to use all available information. More information should be helpful, not a

problem.

One popular method to deal with this problem of many explanatory variables is the

Principal Components Regression (PCR), which was applied by Sargent and Sims (1977)

and Geweke (1977). More recently, this method has been successfully applied to US Macro-

economic data (Stock and Watson (1998, 1999, and 2002)), Bernanke and Boivin (2003).

Marcellino, Stock and Watson (2003) also applied this method to European data, but there

the Principal Components Regression could not consistently improve upon a simple Auto

Regression model.

This literature is growing, and some nice asymptotic results have already been derived

– see Stock and Watson (1998), Forni, Hallin, Lippi, and Reichlin (2000) and Bai and Ng

(2002). Still, some criticisms to this approach remain:

• the results are very sensitive to the scale measurement of the variables, and

• the principal components are constructed without taking into consideration any rela-
tionship between the regressors and the dependent variable.

One method, which tries to overcome the second problem is the Partial Least Squares

(PLS). This method, popular in the Chemometrics literature, was proposed by Wold (1975).

PLS became popular during the 80’s and, a decade later, several papers appeared in the

Statistics literature, analyzing the properties of this method. Although popular among

chemometricians, this method has never become popular among econometricians and econo-

mists. An exception is Gibson and Prisker (2000) who applied this method to economic

data.

A different branch of literature is the Combination of Forecasts proposed by Bates and

Granger (1969) – see also Granger (1989) and Deutsch, Granger and Terävirsta (1994).

This literature deals with the problem of having multiple forecasts for the same variable.

These authors, and others, argue that combining the different forecasts in a suitable manner

leads to better predictions than the individual ones. Bates and Granger (1969) argued that

a simple way to combine the different forecasts is to run a simple regression (OLS) to find

the best combination. Note that if one has a large number of forecasts then simple OLS will

not be appropriate. Chan, Stock and Watson (1999) make the argument that a suitable way

to combine a large number of different forecasts is by PCR.

As an alternative to PCR and PLS, we will combine PCR with the forecast combination

approach. More specifically, we will use each explanatory variable to obtain a forecast for the

dependent variable, and then combine a large number of forecasts using the PCR method.
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The proposed method has two advantages: it is scale invariant, thereby dealing with the first

criticism, and it takes into consideration the explanatory power of the independent variables

on the dependent variable. There is also a third advantadge, which is left for future research,

we don’t need to restrict ourselves to linear models when we produce the forecasts, so this

method has more modelling flexibility than PCR or PLS.

The rest of the paper is organized as follows: section 2 sets up the basic model, and

describes and relates two well-known estimation methods: PCR and PLS. In section 3, a

new method is proposed: PCC. In section 4 the different methods are applied to inflation

forecasting and compared. Section 5 concludes.

2 The Model

Let the basic data be given byX = (x1, ..., xN), a matrix of T observations of N independent

variables, and y, a vector with T observations of the dependent variable. To facilitate

interpretation, we assume that all the variables have already been demeaned.

Consider a factor model of the form:⎧⎪⎨⎪⎩
xn
(T×1)

= λn,1
(1×1)

F1
(T×1)

+ · · ·+ λn,K
(1×1)

FK
(T×1)

+ en
T×1

n = 1, ..., N

y
(T×1)

= β1
(1×1)

F1
(T×1)

+ · · ·+ βK
(1×1)

FK
(T×1)

+ ε
T×1

or, stacking the vectors together:⎧⎪⎨⎪⎩
X

(T×N)
= F

(T×K)
λ

(K×N)
+ e

T×N
y

(T×1)
= F

(T×K)
β

(K×1)
+ ε

T×1
(1)

The crucial assumption of this model is that y depends on X by only a few unobserved

factors F . A factor model of this type is useful when the number of predictor variables is

large (possibly larger than T ), making more common forecasting techniques unattractive or

not feasible. Since F may contain lagged values of the underlying factors, this model is also

called a dynamic factor model.

A natural way to estimate the parameters of the second equation of system 1 is to replace

the unobservable factors by estimated factors, and then estimate β by Ordinary Least Squares

(OLS).

In the next subsections of the paper we consider two different methods to estimate the

unobserved factors:

• Principal Components Regression (PCR), and
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• Partial Least Squares (PLS).

The first is becoming increasingly popular among econometricians, while the latter is

most popular in the Chemometrics literature. We will then propose a modification of the

PCR based on the forecast combination literature. This modification follows the spirit of

PLS (by taking into consideration the effect of each predictor for the dependent variable)

but essentially uses the analytical tools of PCR, with the advantage of being scale invariant.

2.1 Principal Components Regression

If the model described above is correct, a possible procedure is to use the principal compo-

nents of X as an estimate of the factors, and use them to estimate the second equation of

system 1.

As Stone and Brooks (1990) showed, the idea of this method is to find the linear combi-

nations of the X variables, such that a vector of weights, p1, maximizes p0X 0Xp, and then

p2 is chosen to maximize p0X 0Xp subject to the constraint that p0p1 = 0. The vectors of

weights are normalized to have unit distance. Thus p1 is the normalized eigenvector of X 0X

associated with the largest eigenvalue, p2 is the normalized eigenvector associated with the

second largest eigenvalue, and so on.

By choosing the components associated with the largest eigenvalues, one obtains the lin-

ear combinations of X that are orthogonal to each other and simultaneously have the largest

variance. Intuitively, by choosing linear combinations with the possible largest variance, one

is, in a certain sense, maximizing the information contained in those linear combinations.

When carrying out the empirical applications, we discuss how to estimate the numer of

factors.

Stock and Watson (1998), Forni et al. (2000) and Bai and Ng (2002) provide consistency

results for this method. The asymptotic theory of this method assumes not only T →∞ but

also N → ∞. For example, Bai and Ng assume that E kFtk4 < ∞ and 1
T

PT
t=1 F

0
tFt → ΣF

as T →∞, with ΣF being some positive definite matrix. They also assume that each factor

has a nontrivial contribution to the variance of X:
°°°λ0λN −D

°°°→ 0 as N →∞, with D being

some positive definite matrix, and kλnk 6 λ̄ < ∞. They further impose some conditions
on the error terms of the X variables, allowing for heteroskedasticity in both time and cross

section dimensions and some dependence between factors and the errors. Bai and Ng (2002),

and Stock and Watson (1998) with a different set of assumptions, show that, asymptotically,

the estimated factors and the true factors span the same space.
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2.2 Partial Least Squares

Using PCR only the information contained in theX−data is used to estimate the factors. Not
all the information is used, as the relationship to the dependent variable is not considered.

PLS first appeared in the form of an algorithm (which is described bellow). Stone and

Brooks (1990) showed that with PLS a vector of weights p1 is chosen to maximize p0X 0yy0Xp,

then p2 is chosen to maximize p0X 0yy0Xp subject to the constraint that p0(X 0X)p1 = 0. So

one is finding the linear combination of the X variables which maximizes the squared sample

covariance between X and y. Although PLS deals with the second criticism to PCR, it fails

to address the first, as it is scale dependent as well. The usual procedure is to normalize all

the variables to have unit variance. By doing this, maximizing the squared sample covariance

amounts to maximizing the squared sample correlation.

There are at least two algorithms (one proposed by Wold (1975) and the other proposed

by Martens (1985)). Helland (1988) proved the equivalence between them and also proposed

a third method, which is computationally more convenient. Next we will describe the algo-

rithm that Wold (1975) proposed and, after that, the alternative basis that Helland (1988)

proposed. For a description of both algorithms and the proof of their equivalence and also

the equivalence of the alternative basis, the reader is referred to Helland (1988). For some

consistency results of PLS the reader can consult Naik and Tsai (2000)1.

2.2.1 The original PLS algorithm

Define E0 = X and f0 = y. Define Ea and fa recursively as:

Ea = Ea−1 − F̂aλ̂
0
a

fa = fa−1 − F̂aβ̂a
(2)

where F̂ stands for the factor estimate.

We will need to determine F̂a, λ̂a and β̂a in these equations. As with the Principal

Components approach, each estimated factor F̂a will be a linear combination of the X

variables. For example, for a = 1 we have:

F̂1
T×1

=
NX
n=1

xn
T×1

pn1
1×1

= X
T×N

p1
N×1

(3)

Since we would like to use the information contained in y to estimate the factors the

1Assuming that the explanatory variables are i.i.d.,these authors prove consistency of the PLS for T →∞.
Extension to stationary variables is immediate.
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weights will be chosen as:

p1 = X 0y (4)

With this method, explanatory variables with a higher covariance with Y will receive a higher

weight.

In general we have:

F̂a = Ea−1pa (5)

pa = E0
a−1fa−1 (6)

We still need to determine λ̂a and β̂a. To have the best fit in equation (2) we use the

regression coefficients. For a = 1 we have y = F̂1β̂1+f1 andX = F̂1λ̂
0
1+E1, so the regression

coefficients are given by β̂1 =
³
F̂ 0
1F̂1
´−1

y01F̂1, and λ̂
0
1 =

³
F̂ 0
1F̂1
´−1

F̂ 0
1X. In general we have:

λ̂a =
³
F̂ 0
aF̂a

´−1
E0
a−1F̂a (7)

β̂a =
³
F̂ 0
aF̂a

´−1
f 0a−1F̂a (8)

Note that since the F̂a’s are orthogonal to each other (again see Helland (1988)), instead

of equations (7) and (8) we can use:

λ̂a =
³
F̂ 0
aF̂a

´−1
X 0F̂a

β̂a =
³
F̂ 0
aF̂a

´−1
y0F̂a

With this method, the first factor to be estimated is F̂1 = (X)
T×N

(X 0y)
N×1

. So instead of finding

the linear combination of the X variables that maximizes the variance, one is using the

covariance between each predictor and the dependent variable as the weight of that variable.

Then the second factor will be estimated using the covariance between
³
X − F̂1λ̂

0
1

´
and³

y − F̂1q
0
1

´
, and so on.

2.2.2 An alternative basis

The next proposition allows us to use a computationally more convenient

method.

Proposition 1 Let SA be the space spanned by p1, . . . pA. As long as pA is nonzero, an

alternative basis for SA is given by the vectors (X 0y), (X 0X) (X 0y), . . . , (X 0X)A−1 (X 0y).
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Proof. See Helland (1988) or Stone and Brooks (1990).
This algorithm is computationally easier to implement than the original one proposed by

Wold (1975), without requiring any iterative procedure.

2.3 Prediction, spectral representation and relation between PLS

and PCR

For a moment, let us consider a population version of the model described in system 1, where

there is no noise.

Consider the spectral decomposition of S = X 0X =
PK

k=1 ϕkpkp
0
k, where pk is the eigen-

vector associated with the strictly positive eigenvalue ϕk (assuming that X
0X has rank K).

Using the principal components regression, the predicted value for y is given by:

ŷ = F (F 0F )−1 F 0y

=
KX
k=1

Xpk (p
0
kX

0Xpk)
−1

p0k (X
0y)

For prediction purposes all the non-relevant eigenvectors of X 0X can be deleted. Also, if

an eigenvalue has multiple eigenvectors associated with it, the corresponding terms can be

substituted by only one term by rotating in eigenspaceswith equal eigenvalue, such that we

get only one eigenvector. For example, suppose that λ1 = λ2, then we can replace p1 and

p2 by p∗1 =

Ã
p1p01+p2p

0
2

(p01s)
2
+(p02s)

2
1
2

!
(X 0y). Note that p∗01 p1 = 1, and p1p

0
2 (X

0y) + p2p
0
2 (X

0y) =

p∗1p
∗0
1 (X

0y).

Definition 2 The relevant eigenvectors of X 0X to predict y are the ones associated with

different eigenvalues which satisfy p0k(X
0y) 6= 0. The corresponding factors Fk = Xpk are the

relevant factors in X for prediction of y. Let A be the total number of relevant eigenvectors.

Proposition 3 The population PLS space has dimension A, and when this minimal number
of terms is used, the population PLS regression vector and the population PCR regression

vector are equivalent.

Proof. See Helland 1990.
This proposition tells us that the PLS and PCR regression vectors are equivalent when

all the relevant components are included. Some stopping rule must be defined when applying

the algorithm and hence the previous results will only be approximate: with real and noisy

data it is highly unlikely that we find exact repeated values for the eigenvalues or that

p0k(X
0y) = 0 (the sample relevant components will be very close to min (N, T − 1)).
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Perhaps the largest advantage of PLS over PCR is that the possible nonsense of giving a

large weight to an irrelevant explanatory variable is avoided. For example, suppose that the

variable Xg is completely uncorrelated with y. Using the PCR algorithm there is nothing to

prevent this variable from receiving a possibly large weight, while with the PLS approach,

this variable receives approximately zero weight.

3 Forecast Combination and Principal Components

Bates and Granger (1969) – see also Granger (1989) and Deutsch, Granger, and Terävirsta.

(1994) – suggest that when there are several forecasts for the same variable, one sensible

approach is to combine these several forecasts. Several combination methods have already

been by proposed. Chan, Stock and Watson (1999) argue that a suitable way to combine

the different forecasts is to model them as an approximate factor model.

If one has N explanatory variables, then, using univariate regressions it is possible to

produce N forecasts that can be combined using the PCR approach. We will call this

procedure Principal Components Combination (PCC).

Let us consider in detail how to implement the PCC method. Step 1, project y onto

the space spanned by each of the N explanatory variables: zn = xn (x
0
nxn)

−1 x0ny, for n =

1, 2, ..., N . Step 2, create a new matrix of explanatory variables: Z = (z1, ..., zN). Step 3,

find the eigenvectors ui of Z 0Z associated with positive eigenvalues. Let u1 be the eigenvector

associated with the largest eigenvalue, u2 with the second largest, and so on. Step 4, use as

new regressors the variables ZuA associated with the A highest eigenvalues.

By choosing the principal components one is choosing a linear combination of the explana-

tory variables (Z) that maximizes the variance. In this case the variance of each individual

predictor has a natural interpretation: it is the explained variance of y by the corresponding

original explanatory variable. One is no longer finding the principal components without

taking into account the information contained in y. The weight that each variable receives

is not independent from the relationship between the regressors and the dependent variable.

Variables with higher explanatory power are also the variables with the highest variance, and

hence they will tend to receive a higher weight. On the other extreme, if some variable xn
has no explanatory power over y, then the estimated y’s will be constant (since all variables

are in deviations from the mean, zn will be a column of zeros), and this variable will receive

zero weight when constructing the principal components.

If we choose A components the estimated value for y is

ŷ = Z (u1, ..., uA)
£
(Z (u1, ..., uA))

0 Z (u1, ..., uA)
¤−1

(Z (u1, ..., uA))
0 y
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The final forecasts will be independent of the scale of the original variables X, because

the matrix Z will not be changed with the scale of the original variables, so practitionersare

free of choosing appropriate scaling of data.

Proposition 4 Let K be the number of eigenvectors (pk) of X 0X associated with nonzero

eigenvalues and assume that cov (y, xn) 6= 0, n = 1, ..., N . Then (Zu1, ..., ZuK) and (Xp1, ..., XpK)

span the same space.

Proof. Note that an = (x0nxn)
−1X 0

ny is a scalar different from zero asymptotically as long

as cov (y, xn) 6= 0. So zn = anxn and hence X and Z span the same space and the number

of eigenvectors associated with nonzero eigenvalues of X 0X and Z 0Z are the same (i.e., K).

Since (Xp1, ..., XpK) span the same space as X, and (Zu1, ..., ZuK) span the same space as

Z, we must have that (Xp1, ...,XpK) and (Zu1, ..., ZuK) span the same space.

This proposition tells us that, when considering the population version of the model,

PLS and PCC are equivalent, as long as all the components associated with strictly positive

eigenvalues are used. In a sample regression this result will have some noise because the

number of positive eigenvalues will be min (N,T − 1), and obviously it is unfeasible to use
so many components. In small samples, one would expect that when only a few components

are considered then the components estimated by PCC will produce better forecasts (we will

be able to confirm this later) but asymptotically, with N and T approaching infinity, the

results should converge.

We are restricting ourselves to produce the forecasts using a linear model. Although we

do not pursue this route here, there is nothing fundamental about that restriction. If we

believe that a nonlinear model is better to capture the relationship between, say, xi and y

then we can use for that variable a nonlinear model. This is a possible extension of the

method we are proposing.

4 Empirical Application

Inflation forecasts are at the center of policy deliberations at inflation-targeting central banks.

They also play an important role in non-inflation-targeting central banks such as the Federal

Reserve and the European Central Bank. In countries with centralized wages barganing,

inflation forecasts also play a crucial role because unions and firms are mainly concerned

in negociating real wages. Rational economic agents base their investment decisions on

expected real interest rates.

In this section we will apply the methods described in sections 2 and 3 to forecast inflation.

The data was taken from the DRI-Mcgraw Hill Basic Economics database spanning a time

9



horizon from October 1968 to March 2003. This amounts to 413 monthly observations of

140 variables.

All these variables are economic indicators measuring different aspects of the economy

activity, such as real output and income, employment, sales, consumption, housing starts

inventories, stock prices, exchange rates, interest rates, monetary aggregates, wages and,

obviously, inflation.

Most variables were logarithmized (namely all the strictly positive variables that were

not in the form of rates or ratios). Using the ADF and Phillips Perron tests, we test each

series to check if it was stationary or not. In the cases in which the series were not stationary

we took first differences.

We will produce h-month-ahead inflation forecasts using different specifications. We will

estimate the model using T observations and use the estimated model to produce an out of

sample inflation forecast and compare this forecast with the realized inflation rate. This will

be done recursively for the complete sample. Then the Mean Square Prediction Error (MSE)

and the Mean Absolute Prediction Error (MAE) of the out of sample forecasts are obtained

to compare the accuracy of the different methods proposed. Rolling window estimation is

used. For example, if we consider a sample size of 100 observations, we use the first 100

observations to predict the inflation of period 101. Then we will reestimate the model using

observations 2-101 to produce a forecast of the inflation in period 102, and so on

As in Stock and Watson (1999) we will consider two different measures of inflation. One

is the Consumer Price Index (with the mnemonic PUNEW) – a Laspeyres index – and

the other is the Personal Consumer Expenditure deflator (with the mnemonic GMDC) – a

chain weighting.

In the more general form, the model to be estimated is:

πht+h = α+ β (L)xt + γ (L)πt + eht+h, t = 1, 2, ... (9)

The dependent variable is πht+h is given by πht+h =

µhQh
i=1 (1 + πt+i)

i 1
h − 1

¶
. This

specification can be thought of as predicting inflation over the next h months.

The regressor(s) xt is (are) some explanatory variable(s) available at time t. β (L) is a

polynomial vector in the lag operator L, and γ (L) is a polynomial in the lag operator L.

We will consider several competing methods for the choice of xt:

• the Phillips curve: xt is just the unemployment rate between all workers of 16 years
or older of period t,

• the pure time series AR model: xt is omitted,
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• PCR, PLS and PCC: xt is recursively chosen in each regression according to the meth-
ods described below.

For PCR we compute the principal components, using the procedure described in section

3, and choose the one associated with the largest eigenvalue. Then to determine whether

we should include the component associated with the second highest eigenvalue we use a

modified version of the Bayes Information Criterion (BIC), proposed by Bai and Ng (2002)2.

If the inclusion of the second component is rejected, the process stops; otherwise the same

criterion is used again to evaluate the score associated with the third largest eigenvalue, and

so on. A maximum of 10 components is allowed. With the PCC the procedure is the same

as the PCR method. The only difference is that instead of considering the original variables,

these are pre-transformed (as described in section 3).

For example, if the original variable is a vector Xi, we will work with zi = Xi(X
0
iXi)

−10y,

where y is the dependent variable, the h-period ahead inflation rate. Finally to estimate the

components using the PLS method, we use the alternative basis described in proposition 2.

The first component to be included is X(X 0y). Then one checks if X [(X 0X)X 0y] should be

included. If the inclusion is rejected, the process stops; otherwise we check ifX
£
(X 0X)2X 0y

¤
should also be included, and so on. Again a maximum of 10 components is allowed.

Two aditional matters should be mentioned. First since PLS and PCR are scale sensitive

we followed the suggestion in the literature and, in each regression, we normalized all the

variables to have unit variance. Although not reported, we also considered the case with

no normalization. The performance of these two methods is severely worse without the

normalization. We should also note that since we have 140 explanatory variables and when

constructing the X matrix, we include two more lags of each explanatory variable, the matrix

of explanatory variables has 420 columns.

To choose the order of the polynomials β (L) and γ (L) , we use the typical BIC.

4.1 Results

In tables 1 to 5 we can check the performance of the various methods. On the top part

of each table we have the relative (to PCR) mean square forecast errors and on the lower

part the relative mean absolute forecast error. We considered several sample sizes, so that

one can evaluate the performance on small and on larger samples. Naturally, the larger the

sample size is, the lesser the number of feasible estimations is.

2Bai and Ng showed that the standard BIC can only consistently estimate the correct number of factors
if the factors are known. If one has to estimate the factors then the BIC may not consistently estimate the
correct number of factors. The same criterion was used by Marcellino et al. (2003).
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By a simple counting procedure it is apparent that the PCC method gives the most

accurate forecasts: in 76 times, out of 120, the PCC had the smallest out of sample relative

forecast errors. PLS also performed reasonably well, being able to produce the smallest mean

forecast errors 32 times, followed by PCR (8 times) and the AR model (4 times).

Taking the PCR model as the benchmark, we conclude that PCC was able to beat PCR

101 times (out of 120), while PLS produced more accurate forecasts than PCR (according

to the two different criteria) 70 times. Comparing the PCC method with PLS we can see

the PCC produces more accurate forecasts 84 times (out of 120).

To compare the performance of these methods in a more formal way we consider two tests.

One is a sign test (see Diebold and Mariano (1995) for details), the other is the Diebold and

Mariano Statistic (again see Diebold and Mariano (1995) for details) to test if the MSE and

MAE of two different methods are statistically significantly different (the null being that the

forecast performances are similar) – negative values of the test statistics mean that PCC

performed better according to the criterion of the test. In tables 6 to 10 we have the results

of the tests comparing PCR with PCC (bellow the value of each statistic is the p−value).
Of all the tests applied to each series of forecasts, only once it was concluded that the

PCR had a significantly better performance (considering 10% significance level) than PCC —

namely when predicting the 6 months inflation, using the GMDC price index, and the MAE

criterion to evaluate the performance.

On the other hand we can see that PCC performs significantly better than PCR several

times and according to the several tests. For example, when predicting the two years infla-

tion, the PCC performance is always significantly better than PCR, according to the three

different statistics (except when we have the sample size of 300). For shorter horizons, like

one month or three month inflation forecasts although PCC systematically performs better,

only sporadically the better performance is statistically significant. Looking at intermediate

horizon forecasts (6 and 12 months), we conclude that about half of the times the difference

between the performance of the two methods is statistically significant.

In tables 11 to 15, we can see the results of the same tests comparing PCC with PLS –

as before, negative values for the test statistics mean that PCC performed better. PCC was

significantly more accurate (considering a significance level of 10%) 81 times while PLS was

significantly more precise 19 times. Given these results, it is fair to consider PCC as being

the method with the overall best performance.
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5 Conclusions

Stock and Watson (1999) considered several forecasting models to predict inflation in the

US. Of the several models they considered, PCR was the one with the best performance. In

this paper we used this model as a benchmark.

To overcome some of the criticisms to the PCR method, two other methods, which can

be applied in similar situations, were proposed:

• the Partial Least Squares, which is very well-known in the Chemometrics literature,
and its relation with PCR has already been widely studied, and

• the Principal Components Combination, which tries to overcome the shortcomings
of the PCR method by combining this method with the literature on combinations

of forecasts. This method is scale invariant with respect to the original explanatory

variables, and takes into consideration the explanatory power of each of the explanatory

variables when choosing the weights to give to each variable.

The main results of Stock andWatson was reproduced in this paper: PCR leads to sig-

nificant improvements over the typical AR model, or over the traditional Phillips curve.

However the new method PCC outperforms PCR in many cases.

PLS seems to produce better forecasts than PCR for longer horizons (one or two years

inflation forecasts), but these results do not carry over to smaller horizons.

PCC outperforms PCR and PLS.
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