# Optimal monetary policy with a regime-switching exchange rate in a forward-looking model* 

Fernando Alexandre $\ddagger$ Pedro Baçãoªnd John Driffill ${ }^{〔}$

30th April 2007
Very preliminary. Please do not quote without permission.


#### Abstract

We evaluate the macroeconomic performance of different monetary policy rules when there is exchange rate uncertainty. We do this in the context of a non-linear rational expectations model. The exchange rate is allowed to deviate from its fundamental value and the persistence of the deviation is modelled as a Markov switching process. Our results suggest that taking into account the switching nature of the economy is important only in extreme cases.


JEL Classification: E52, E58, F41.
Keywords: Exchange Rates, Monetary Policy, Markov Switching.

[^0]
## 1 Introduction

There are examples throughout history of instances where dramatic changes in asset prices have coincided with prolonged booms and busts. Several papers have examined the optimal reaction of central banks when they face extreme changes in asset prices (see, among others, Bernanke and Gertler, 1999; Gilchrist and Saito, 2006). Among asset prices, the exchange rate, when driven by non-fundamental movements, has been an important issue in monetary policy debates, namely, for inflation targeting economies.

The exchange rate introduces additional channels for monetary policy, making it a potential policy target. However, it is well documented that exchange rates can experience sustained deviations from its long run equilibrium, followed by sudden corrections. The impact of these unwarranted exchange rate movements on macroeconomic performance has been a concern of central bankers and scholars. Results from the estimation of structural VARs, such as in Clarida and Gertler (1997), suggest that central banks indirectly try to influence the exchange rate through movements in the interest rate. However, evidence from simulated open-economy models on whether monetary policy should react to the exchange rate is mixed.

Ball (1999) shows that an interest rate policy rule that responds only to output and inflation, like a Taylor rule, is not optimal for an open economy. Svensson (2000) using a forward-looking model, concludes that the exchange rate can be a very useful instrument in stabilising Consumer Price Index (CPI) inflation. Ceccheti et al. (2000) believe that central banks can improve macroeconomic performance by responding to asset prices as well as to expected inflation and to the output gap. Batini and Nelson (2000) model a bubble in the exchange rate as an exogenous process that temporarily shifts the exchange rate away from its long-run equilibrium and conclude that responding to the exchange rate does not improve welfare in most cases, and may even lead to lower welfare.

Leitemo and Soderstrom (2005) analyse the impact of exchange rate uncertainty on the conduct of monetary policy and conclude that policy rules without an exchange
rate term, namely a Taylor rule, are optimal for the stabilisation of a small open economy. However, Wollmershauser (2006) and Zampolli (2006) concluded that reacting to the exchange rate improves macroeconomic stability in models that incorporate exchange rate uncertainty. Wollmershauser (2006) concluded that monetary policy rules that include an exchange rate term are more robust to a high degree of exchange rate uncertainty, concerning the relationship between the nominal exchange rate and the nominal interest rate or other macroeconomic variables. Zampolli (2006) used a simple backward-looking model of the type defined in Ball (1999) with a regime-switching exchange rate, which aimed at capturing the complex behaviour of financial markets, to analyse the benefits from reacting to the exchange rate when there is uncertainty about the nature of the misalignment.

However, the absence of forward-looking behaviour prevents the model from capturing the essential role of expectations in monetary policy and in asset markets. Therefore, we extend Zampolli's (2006) analysis by considering an open-economy forward-looking model of the type used in Svensson (2000). In that sense we test the conjecture of Zampolli (2006, pp. 1530) that "the main insights and conclusions are likely to carry over to a forward-looking model".

This extension is of great importance as the exchange rate, being an asset price, is inherently forward-looking. Additionally, we assume regime-switching in the exchange rate, that is, the exchange rate may be in one of two states. In one regime it randomly oscillates around its equilibrium, defined by the real interest parity condition. In the other regime the deviations from equilibrium are persistent. We experiment a range of values for the transition probabilities and for the persistence coefficient. We assume that the transition probabilities are exogenous and observed by policymakers. We therefore abstract from the issue of imperfect information at this stage. Uncertainty in this context results from the policymaker not knowing in which regime the exchange rate will be in the next period.

We start our analysis by comparing the optimal welfare loss when the policymaker faces no uncertainty about the nature of the shock to the real exchange rate and when policymakers have to assign a given probability to a transitory shock and to a
very persistent or bubble shock. Then we analyse the performance of simple policy rules, both with and without an exchange rate term, and evaluate their robustness in dealing with exchange rate uncertainty.

Finally, we evaluate the benefits from taking into account the switching nature of the economy by comparing the performance of time invariant rules to regime switching rules.

Section 2 describes our open-economy model and the monetary policy framework. Section 3 evaluates the welfare loss for a set of policy rules under exchange rate uncertainty. Section 4 concludes.

## 2 An open economy with a regime-switching exchange rate

The exchange rate introduces additional channels for monetary policy through its effects on aggregate demand and domestic inflation. In Ball (1999), the change in the exchange rate affects inflation because it is passed directly into import prices. Following Svensson (2000), the inclusion of the exchange rate in our model adds three channels for monetary policy to affect the Consumer Price Index (CPI). First, it can affect inflation with a lag through its effect on aggregate demand. Second, the exchange rate can affect domestic inflation, and therefore the CPI, by affecting domestic currency prices of imported intermediate goods and, more indirectly, through its effects on nominal wages that depend on the evolution of the CPI. Finally, the exchange rate affects CPI inflation through its effects on domestic currency prices of imported final goods. Therefore, the model that we describe below tries to capture all these three effects. The lag structure of our model is such that it captures the often mentioned fact (see, e.g., Svensson, 2000; Ball, 1999; Edwards, 2006) that monetary policy can affect the consumer price index with a shorter lag through the exchange rate channels.

### 2.1 The model

Our stylised system of macroeconomic equations is the following:

$$
\begin{align*}
y_{t} & =E_{t} y_{t+1}-\alpha_{1}\left(i_{t}-E_{t} \pi_{t+1}\right)+\alpha_{2} y_{t-1}^{*}+\alpha_{3} q_{t}+\varepsilon_{t}^{d}  \tag{1}\\
\pi_{t}^{d} & =\beta_{1} \pi_{t-1}^{d}+\left(1-\beta_{1}\right) \beta E_{t} \pi_{t+1}^{d}+\beta_{2} y_{t-1}+\beta_{3}\left(q_{t}-q_{t-1}\right)+\varepsilon_{t}^{s}  \tag{2}\\
q_{t} & =E_{t} q_{t+1}-i_{t}+E_{t} \pi_{t+1}+i_{t}^{*}-E_{t} \pi_{t+1}^{*}+\varepsilon_{t}^{q}  \tag{3}\\
\pi_{t} & =\pi_{t}^{d}+\omega\left(q_{t}-q_{t-1}\right)  \tag{4}\\
\varepsilon_{t}^{s} & =\rho^{s} \varepsilon_{t-1}^{s}+e_{t}^{s}  \tag{5}\\
\varepsilon_{t}^{d} & =\rho^{d} \varepsilon_{t-1}^{d}+e_{t}^{d}  \tag{6}\\
\varepsilon_{t}^{q} & =\rho_{s t}^{q} \varepsilon_{t-1}^{q}+e_{t}^{q}  \tag{7}\\
y_{t}^{*} & =\rho_{y^{*}} y_{t-1}^{*}+e_{t}^{y^{*}}  \tag{8}\\
\pi_{t}^{*} & =\rho_{\pi^{*}} \pi_{t-1}^{*}+e_{t}^{\pi^{*}}  \tag{9}\\
i_{t}^{*} & =\rho_{i^{*}} \pi_{t}^{*}+\rho_{i^{*}}^{\prime} y_{t}^{*}+e_{t}^{i^{*}} \tag{10}
\end{align*}
$$

Equation (1) is the aggregate demand equation for an open economy of the type used in Svensson (2000). Output depends on its own expected value, on the real interest rate, on the lagged foreign output, $y_{t}^{*}$, and on the real exchange rate, $q$. In this model the real exchange rate affects the aggregate demand because it affects the the relative price between domestic and foreign goods: a higher $q$ means depreciation, that is, $q_{t} \equiv s_{t}+p_{t}^{*}-p_{t}$, where $s$ is the price of foreign currency in terms of domestic money. Additionally, output depends on a demand shock that we assume to follow an $\mathrm{AR}(1)$ process, as in equation (6). Following Svensson (2000) we set the following values for the coefficients in the aggregate demand equation: $\alpha_{1}=0.6, \alpha_{2}=0.05$ and $\alpha_{3}=0.04$.

Equation (2) is a "hybrid" Phillips curve where $\pi_{t}^{d}$, is domestic inflation. In face of the discussion and evidence provided in Gali and Gertler (1999), we have substituted lagged output for the marginal cost, and we also include some open-economy elements. Following the survey of empirical estimates presented in Rudebusch (2002), we consider the inflation persistence coefficient to be $\beta_{1}=0.4$. We set $\beta=0.99$ as in Gali and Gertler (1999), and $\beta_{2}=0.13$ as in Rudebusch (2002). The inclusion of the
change in the exchange rate in the domestic inflation equation aims at capturing its effect on domestic currency prices of imported intermediate goods. In our analysis, we follow Svensson (2000) and we set the pass-through parameter, that gives the impact of changes in the exchange rates on domestic inflation, $\beta_{3}=0.01$.

We assume that the uncovered interest parity condition holds, that is, $i_{t}-i_{t}^{*}=$ $E_{t} s_{t+1}-s_{t}+\varepsilon_{t}^{q}$, where $\varepsilon_{t}^{q}$ is the exchange-rate risk premium. Using this assumption and the definition of real interest rate given above, equation (3) defines the real interest parity condition.

Equation (7) specifies the process for the shock in the exchange rate. We assume that the exchange rate may be in one of two states. In state $1, \rho_{s_{t}}^{q}>0$ and therefore the exchange rate deviates persistently from its fundamental value. In state $2, \rho_{s_{t}}^{q}=0$ and thus the exchange rate is subject to random shocks that deviate it from its long-run equilibrium value, but without any persistence. The variance of the exogenous shock $e_{t}^{q}$ is the same across regimes, which implies that, as seems reasonable, the variance of $\varepsilon_{t}^{q}$ increases in the first regime, and the higher the persistence the more it increases.

State 1 represents times of instability, where the exchange rate is "disconnected" from fundamentals for long periods. Several authors have been providing rationales for the "disconnect puzzle" described in Obstfeld and Rogoff (2000). For example, De Grauwe and Grimaldi (2006) assume heterogeneous agents with different beliefs about the behaviour of the exchange rate, which results in persistent deviations from equilibrium and non-linear behaviour. The state is assumed to evolve as a Markov chain with the following probability transition matrix:

$$
P=\left[\begin{array}{ll}
p_{11} & p_{12}  \tag{11}\\
p_{21} & p_{22}
\end{array}\right]
$$

where $p_{i j}=1-p_{i i}($ when $i \neq j)$ and $p_{i j}$ is the probability of moving from state $i$ in the current period to state $j$ in the next period. In our computations we use the values $0.25,0.5$ and 0.75 for $p_{i i}$. In the single state model, we have $\rho_{1}^{q}=\rho_{2}^{q}$ and thus the probability transition matrix becomes irrelevant. We also use a range of values for the autoregressive coefficient in the first regime: 0.5 (mild persistence), 0.9 (high
persistence) and 1.1 (explosive).

Bordo and Jeanne (2002), in a three period model, assumed that monetary policy can affect the transition probabilities. Zampolli (2006) argues that assuming exogenous transition probabilities is not unreasonable given the high degree of uncertainty about the stochastic properties of an asset price and their relationship with monetary policy. We follow this author and in our computations we assume that the transition probabilities are exogenous and observed by policymakers. We therefore abstract from the issue of imperfect information at this stage. Uncertainty in this context results from the policymaker not knowing in which regime the exchange rate will be in the next period.

Clarida, Galí and Gertler (2001) show that in an open economy it is important to distinguish between domestic inflation and consumer price inflation, as measured by the Consumer Price Index. These authors concluded that for an economy with perfect exchange-rate pass-through the central bank should target domestic inflation and let the exchange rate to float. Equation (4) defines CPI inflation, $\pi$, as a function of domestic inflation and the change in the real exchange rate. This results from defining the CPI as a weighted average of domestic inflation, $\pi_{t}$, and domestic-currency inflation of imported foreign goods, $\pi_{t}^{f},{ }^{1}$ where $\omega$ is the share of imported goods in CPI. This equation shows that the exchange rate can affect the consumer price directly, which allows monetary policy to affect CPI inflation with a shorter lag than through the aggregate demand channel. The effect of the exchange rate on the CPI depends on the weight of the domestic-currency inflation of imported foreign goods. Svensson (2000) sets $\omega=0.3$.

As in Svensson (2000) we assume that foreign output and foreign inflation follow stationary $\mathrm{AR}(1)$ processes as described in equations (8) and (9). We set $\rho_{y^{*}}=$ $\rho_{\pi^{*}}=0.8$. The foreign interest rate is assumed to follow a Taylor rule with $\rho_{i^{*}}=1.5$, $\rho_{i^{*}}^{\prime}=0.5$, as in Svensson (2000).

[^1]
### 2.2 Policy rules and welfare

A Markov-switching rational expectations model requires adequate solution methods. Svensson and Williams (2005) and Farmer, Waggoner and Zha (2006) propose two such methods. Svensson and Williams' method uses an iterative procedure similar to the one used to solve simple optimal linear quadratic regulator problems. Farmer et al. rightly argue that Svensson and Williams' method does not guarantee that the solution is unique. Farmer et al. propose a modification of Sims (2001) method to deal with the case of Markov-switching rational expectations while maintaining the ability to analyse the uniqueness of the solution. In this paper we employ Svensson and Williams' method to compute the optimal loss, and base our numerical optimisation of simple rules on Farmer et al.' method, selecting only rules that correspond to unique and stable solutions.

Simple rules have been widely discussed among academics in monetary policy analysis. Several arguments have been used in its defense. On one hand, it has been argued that simple rules perform nearly as well as optimal rules (see, for example, Rudebusch and Svensson, 1999). On the other hand, it has been argued that simple rules are very robust to several types of uncertainty (see, for example, Levin, Wieland and Williams, 1999). We therefore use simple rules to see how they compare to the optimal policy rule and how robust they are in dealing with exchange rate uncertainty. The different rules are summarised in Table 1.

We compute the optimal parameters for Taylor-type and inflation-forecast based policy rules. In the Taylor-type policy rule the interest rate reacts to deviations of output and inflation from the target. Additionally, we look at the Taylor-type policy rule with an exchange rate term. As a benchmark, we also look at the performance of the Taylor rule as defined in Taylor (1993).

In the inflation-forecast based policy rule the interest rate responds to deviations of expected inflation from the target. We also consider an inflation-forecast based rule with an exchange rate term.

As in Zampolli (2006), we compute both time-invariant policy rules and regime-switching

Table 1: Simple policy rules

| Rule | Formula |
| :---: | :---: |
| TRo | $i_{t}=1.5 \pi_{t}+0.5 y_{t}$ |
| TR +q | $i_{t}=\delta_{s_{t}}^{\pi} \pi_{t}+\delta_{s_{t}}^{y} y_{t}+\delta_{s_{t}}^{q} q_{t}$ |
| TR | $i_{t}=\delta_{s_{t}}^{\pi} \pi_{t}+\delta_{s_{t}}^{y} y_{t}$ |
| TR+q R | $i_{t}=\delta_{s_{t}}^{\pi} \pi_{t}+\delta_{s_{t}}^{y} y_{t}+\delta_{s_{t}}^{q} q_{t}, \delta_{s_{t}}^{\pi}, \delta_{s_{t}}^{y} \in[0,5], \delta_{s_{t}}^{q} \in[-1,1]$ |
| TR R | $i_{t}=\delta_{s_{t}}^{\pi} \pi_{t}+\delta_{s_{t}}^{y} y_{t}, \delta_{s_{t}}^{\pi}, \delta_{s_{t}}^{y} \in[0,5]$ |
| TR+q RI | $i_{t}=\delta^{\pi} \pi_{t}+\delta^{y} y_{t}+\delta^{q} q_{t}, \delta^{\pi}, \delta^{y} \in[0,5], \delta^{q} \in[-1,1]$ |
| TR RI | $i_{t}=\delta^{\pi} \pi_{t}+\delta^{y} y_{t}, \delta^{\pi}, \delta^{y} \in[0,5]$ |
| TR+q I | $i_{t}=\delta^{\pi} \pi_{t}+\delta^{y} y_{t}+\delta^{q} q_{t}$ |
| TR I | $i_{t}=\delta^{\pi} \pi_{t}+\delta^{y} y_{t}$ |
| IFT+q | $i_{t}=\delta_{s_{t}}^{e} E_{t} \pi_{t+1}+\delta_{s_{t}}^{q} q_{t}$ |
| IFT | $i_{t}=\delta_{s_{t}}^{e} E_{t} \pi_{t+1}$ |
| IFT+q I | $i_{t}=\delta^{e} E_{t} \pi_{t+1}+\delta^{q} q_{t}$ |
| IFT I | $i_{t}=\delta^{e} E_{t} \pi_{t+1}$ |

policy rules. The inclusion of time-invariant policy rules, where the switching nature of the exchange rate misalignments is not taken into consideration, is based on the argument that they could be a good option if the policymaker cannot observe the regime (Zampolli, 2006).

The values of the parameters in policy rules are chosen so as to minimise the following loss function (also used by, e.g., Rudebusch and Svensson, 1999):

$$
\text { Loss Function }=V\left(\pi_{t}\right)+V\left(y_{t}\right)+0.5 V\left(i_{t}-i_{t-1}\right)
$$

where $V(x)$ represents the unconditional variance of variable $x$.
The optimal policy rule aims at minimising a weighted sum of the unconditional variances of output, inflation and interest rate.

## 3 Monetary policy under exchange rate uncertainty

As mentioned in the introductory section, evidence from simulated open-economy models with exchange rate uncertainty on whether monetary policy should react to the exchange rate is mixed. Leitemo and Soderstrom (2005) analyse the impact of exchange rate uncertainty for the conduct of monetary policy and conclude that policy rules without an exchange rate term, namely a Taylor rule, are optimal at stabilising a small open economy. However, Wollmershauser (2006) and Zampolli (2006) concluded that reacting to the exchange rate improves macroeconomic stability in models that incorporate exchange rate uncertainty. Wollmershauser (2006) concluded that monetary policy rules that include an exchange rate term are more robust to a high degree of exchange rate uncertainty, concerning the relationship between the nominal exchange rate and the nominal interest rate or other macroeconomic variables.

Zampolli (2006) used a simple backward looking model of the type defined in Ball (1999) with a regime-switching exchange rate, which aimed at capturing the complex behaviour of financial markets. In his analysis policymakers are uncertain about the nature of the shock that hits the real exchange. Policymakers therefore have to assign given probabilities to a transitory shock and to a very persistent or bubble shock. Zampolli (2006) then investigates how that type of uncertainty affects the optimal reaction of policy instruments and how that reaction depends on the transition probabilities that characterise the shock. He concludes that an invariant Taylor rule performs significantly worse than the optimal policy when the probability of continuing in the bubble regime is high and the probability of continuing in the other regime is low. Zampolli also concludes that a time invariant Taylor rule that includes an exchange rate term performs noticeably better than a time invariant Taylor rule without an exchange rate term.

A drawback of Zampolli's analysis is the absence of forward-looking behaviour prevents the model from capturing the essential role of expectations in monetary policy and in asset markets. Therefore, we extend Zampolli's analysis by considering an open-economy forward-looking model of the type described above.

Following Zampolli's strategy, we started by computing, as a benchmark, the value of the optimal loss when policymakers face no uncertainty about the nature of the shock on the real exchange rate, that is, they know it to be white noise. In that case, we found the value of the loss to be 14.352 (see Table 2).

Table 2: Loss with 1 Regime

|  | $\rho_{1}^{q}=\rho_{2}^{q}$ |  |  |
| :---: | :---: | :---: | :---: |
| Policy | 0.0 | 0.5 | 0.9 |
| Optimal | 14.352 | 14.536 | 17.123 |
| TR +q | 19.117 | 19.533 | 24.750 |
| TR | 19.142 | 19.543 | 24.785 |
| TR +q R | 19.233 | 19.648 | 24.775 |
| TR R | 19.253 | 19.657 | 24.877 |
| TRo | 20.721 | 21.098 | 27.933 |
| IFT+q | 28.423 | 28.509 | 32.227 |
| IFT | 30.534 | 30.770 | 37.636 |

Then we simulated the model and computed the optimal policy for different values of the transition probabilities and for different values of the autoregressive coefficient on the real exchange rate shock. We assumed the shock on the real exchange rate to be mildly persistent, very persistent or to be of the bubble type. The values for the transition probabilities and the autoregressive coefficients and the corresponding value of the central bank's loss are presented in Tables 2 and 3 .

The results in Table 3 show that introducing uncertainty in the behaviour of the non-fundamental shock that affects the real exchange rate increases, as expected, the welfare loss. The welfare loss increase is higher when the persistence of the non-fundamental shock is higher. It also increases with the probability of being in the regime where the non-fundamental shock to the real exchange rate is persistent, i.e., the loss increases with $p_{11}$ and decreases with $p_{22}$. The effect on welfare is nonlinear: the effect is magnified as persistence increases towards (and beyond) unity. In fact, the values in Table 3 that stand out are those associated with high

Table 3: Loss: Optimal policy and the original Taylor rule

|  | Optimal |  |  |  |  | TRo |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $p_{22}$ |  |  |  |  |  | $p_{22}$ |  |
| $\rho_{1}^{q}$ | $p_{11}$ | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 |  |
| 0.5 | 0.25 | 14.405 | 14.394 | 14.379 | 20.831 | 20.808 | 20.776 |  |
| 0.5 | 0.50 | 14.426 | 14.414 | 14.394 | 20.873 | 20.848 | 20.810 |  |
| 0.5 | 0.75 | 14.464 | 14.451 | 14.427 | 20.950 | 20.930 | 20.892 |  |
| 0.9 | 0.25 | 14.500 | 14.470 | 14.426 | 21.038 | 20.968 | 20.876 |  |
| 0.9 | 0.50 | 14.633 | 14.586 | 14.509 | 21.301 | 21.209 | 21.067 |  |
| 0.9 | 0.75 | 15.041 | 14.965 | 14.813 | 22.169 | 22.080 | 21.885 |  |
| 1.1 | 0.25 | 14.584 | 14.538 | 14.468 | 21.266 | 21.127 | 20.966 |  |
| 1.1 | 0.50 | 14.963 | 14.863 | 14.693 | 22.103 | 21.791 | 21.428 |  |
| 1.1 | 0.75 | 19.155 | 18.627 | 17.563 | 31.541 | 27.840 | 25.581 |  |

persistence ( $\rho_{1}^{q}=1.1$ ) and high duration of the "bubble" period ( $p_{11}=0.75$ ); the loss increases between $22 \%$ and $34 \%$ compared to the case with white noise deviations and without regime-switching in the exchange rate.

The Taylor and inflation-based forecast rules, described above and summarised in Table 1, perform much worse than the optimal policy. The difference exceeds $30 \%$ of the optimal loss. The optimised Taylor rule is always better than the corresponding inflation-based forecast rule, by a margin of at least $20 \%$. The original Taylor rule is worse than an optimised Taylor rule by at least $7 \%$. But it is usually better than an inflation-based forecast rule, except in our worst possible scenario: $\rho_{1}^{q}=1.1, p_{11}=$ $0.75, p_{22}=0.25$.

Optimised Taylor rules have coefficients that vary widely with the parameters of the model and tend to be extremely large, sometimes even exceeding 2000. However, restricting the coefficients not to exceed 5 , so as not to be too far from the original coefficients and from the coefficients employed in other studies, does not affect the loss very much: the difference is below $0.7 \%$. The optimised parameters of IFT rules are always between 1.5 and 2.5 for $E_{t} \pi_{t+1}$, and between 0 and 0.3 for $q_{t}$.

Reacting to the exchange rate does not yield much dividends in the case of the Taylor rule: the difference is less than $0.8 \%$. The optimised Taylor rule without an exchange rate term seems to be robust in the context of regime-switching in the exchange rate. These results appear to reinforce the findings of Leitemo and Soderstrom (2005).

However, in the case of an inflation-based forecast rule, the benefit from reacting to the exchange rate is never below $7 \%$ and may even go beyond $20 \%$. Similarly to the optimal policy case, the more significant benefits from reacting to the exchange rate arise when the shock and the bubble-regime are very persistent: $\rho_{1}^{q}=1.1, p_{11}=0.75$ (see Table 6). Welfare gains from the reaction to the exchange rate result from a more stable output, inflation and policy instrument.

In order to evaluate the benefits from switching the policy rule coefficients according to the exchange rate regime we compare the performance of time invariant rules to regime-switching rules. In the case of the inflation-based forecast rule, an optimised time invariant rule leads to an increase in welfare loss inferior to $0.2 \%$, i.e., taking into account the switching nature of the economy does not bring significant benefits, both when the policy rule includes an exchange rate term and it does not.

In the case of the Taylor rule, use of an optimised time invariant rule leads to an increase in welfare loss below $0.5 \%$, in general. However, the difference goes up to $6 \%$ in our worst scenario ( $\rho_{1}^{q}=1.1, p_{11}=0.75, p_{22}=0.25$ ). It appears that taking into account the switching nature of the economy is important only in extreme cases. The same applies to the case where a restricted, optimised, time invariant Taylor rule is used, though the difference in welfare loss is slightly bigger. These results seem to corroborate the findings of Zampolli (2006) in the context of a backward-looking model.

## 4 Conclusion

Evidence from simulated open-economy models with exchange rate uncertainty on whether monetary policy should react to the exchange rate is mixed. Zampolli (2006)
concluded that policy rules that include an exchange rate term are more robust when the policymaker faces exchange rate uncertainty. In his analysis Zampolli used a backward-looking model. We extend his analysis by considering a forward-looking model. The computation of the optimal loss uses Svensson and William (2005) solution method and numerical optimisation of simple rules uses Farmer et al (2006) method.

As in Zampolli (2006), we consider that the exchange rate may be in one of two states: in one regime it randomly oscillates around its equilibrium; in the other regime the deviations from equilibrium are persistent. We experiment a range of values for the transition probabilities and for the autoregressive coefficient. We assume that the transition probabilities are exogenous and observed by policymakers.

We conclude that introducing uncertainty in the behaviour of the non-fundamental shock, that affects the real exchange rate, increases the welfare loss, compared to the case with white noise deviations and no regime-switching in the exchange rate. The welfare loss increases with the persistence of the non-fundamental shock and with the probability of being in the regime where the misalignment in the exchange rate is persistent.

Simple policy rules perform much worse than the optimal policy. Optimised Taylor rules are always better than the corresponding inflation-based forecast rule. As found in Leitemo and Soderstrom (2005), the optimised Taylor rule without an exchange rate term seems to be robust in the context of exchange rate uncertainty. However, significant welfare gains arise from adding an exchange rate term to the inflation-based forecast rule. These gains are over $20 \%$ when the shock and the bubble-regime are very persistent.

Finally, we evaluate the benefits from taking into account the switching nature of the economy by comparing the performance of time invariant rules to regime switching rules. We conclude that taking into account the regime-switching in the exchange rate, both for the Taylor rule and for the inflation-based forecast rule, does not bring significant benefits. However, when the shock and the bubble-regime are very persistent an optimised time invariant Taylor rule can increase the welfare loss
significantly.
Our results for a forward-looking model seem to corroborate the findings, in the context of a backward-looking model, of Zampolli (2006) that taking into account the switching nature of the economy is important only in extreme cases.

## 5 References

Ball (1999). Policy rules for open economies. In Taylor, J. (Ed.), Monetary Policy Rules. The University of Chicago Press, Chicago.

Batini, N. and E. Nelson (2000). When the bubble bursts: monetary policy rules and foreign exchange market behaviour. Mimeo, Bank of England.

Bernanke, B. and M. Gertler (1999). Monetary policy and asset price volatility. NBER Working Paper 7559.

Bordo, M. and O. Jeanne (2002). Booms and busts in asset prices, economic instability, and monetary policy. NBER Working Paper 8966.

Cecchetti, S., H. Genberg, J. Lipsky and S. Wadhwani (2000). Asset prices and central bank policy. Geneva Reports on the World Economy No. 2, International Centre for Monetary and Banking Studies and Centre for Economic Policy Research, Geneva.

Clarida, R., J. Gali and M. Gertler (2001). Optimal monetary policy in open versus closed economies: an integrated approach. American Economic Review Papers and Proceedings. 91, 2, pp. 248-252.

Clarida and Gertler (1997). How the Bundesbank conducts monetary policy. In: Romer C. and D. Romers (Eds.), Reducing inflation: motivation and strategy. The University of Chicago Press, Chicago.

De Grauwe and Grimaldi (2006). Exchange rate puzzles: a tale of switching attractors. European Economic Review. 50, 1, pp. 1-33.

Edwards, S. (2006). The relationship between exchange rates and inflation targeting revisited. NBER Working Paper 12163.

Farmer, R., D. Waggoner and T. Zha (2006). Minimal state variable solutions to Markov-Switching rational expectations models. Mimeo

Gali, J. and M. Gertler (1999). Inflation dynamics: a structural econometric analysis. Journal of Monetary Economics. 40, 2, pp. 195-222.

Gilchrist and Saito (2006). Expectations, asset prices and monetary policy: the role of learning. NBER Working Paper 12442.

Leitemo and Soderstrom (2005). Simple monetary policy rules under exchange rate uncertainty. Journal of International Money and Finance. 24, pp. 481-507.

Obstfeld, M. and K. Rogoff (2000). The six major puzzles in international finance: is there a common cause? NBER Macroeconomics Annual, 15. National Bureau for Economic Research and Massachusetts Institute of Technology.

Sims, C. (2001). Solving linear rational expectations models. Journal of Computational Economics, 20, 1, pp. 1-20.

Rudebusch, G. and L. Svensson (1999). Policy rules for inflation targeting. In Taylor, J. (Ed.), Monetary Policy Rules. The University of Chicago Press, Chicago.

Rudebusch, G. (2002). Assessing nominal income rules for monetary policy with model and data uncertainty. Economic Journal. 112, pp. 402-432.

Svensson (2000). Open-economy inflation targeting. Journal of International Economics. 50, pp. 155-183.

Svensson, L. and N. Williams (2005). Monetary policy with model uncertainty: distribution forecast targeting. NBER Working Paper 11733.

Zampolli, F. (2006). Optimal monetary policy in a regime-switching economy: the response to abrupt shifts in exchange rate dynamics. Journal of Economics Dynamics and Control. 30, pp. 1527-1567.

Wollmershauser (2006). Should central banks react to exchange rate movements? An analysis of robustness of simple policy rules under exchange rate uncertainty. Journal of Macroeconomics. 28, pp. 493-519.

## Tables

Table 4: Loss: optimised Taylor rule

| TR+q |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $p_{22}$ |  |  |  |  |  |  |
| $\rho_{1}^{q}$ | $p_{11}$ | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 |
| 0.5 | 0.25 | 19.239 | 19.214 | 19.179 | 19.260 | 19.236 | 19.203 |
| 0.5 | 0.50 | 19.286 | 19.261 | 19.220 | 19.306 | 19.282 | 19.242 |
| 0.5 | 0.75 | 19.373 | 19.354 | 19.314 | 19.390 | 19.371 | 19.334 |
| 0.9 | 0.25 | 19.481 | 19.405 | 19.302 | 19.501 | 19.428 | 19.327 |
| 0.9 | 0.50 | 19.770 | 19.677 | 19.525 | 19.790 | 19.698 | 19.547 |
| 0.9 | 0.75 | 20.621 | 20.561 | 20.406 | 20.632 | 20.574 | 20.420 |
| 1.1 | 0.25 | 19.753 | 19.599 | 19.414 | 19.771 | 19.623 | 19.439 |
| 1.1 | 0.50 | 20.604 | 20.320 | 19.936 | 20.629 | 20.325 | 19.958 |
| 1.1 | 0.75 | 27.304 | 25.284 | 23.828 | 27.309 | 25.313 | 23.864 |
|  |  |  | TR+q R |  |  | TR R |  |
|  |  |  | $p_{22}$ |  |  | $p_{22}$ |  |
| $\rho_{1}^{q}$ | $p_{11}$ | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 |
| 0.5 | 0.25 | 19.357 | 19.331 | 19.295 | 19.375 | 19.350 | 19.315 |
| 0.5 | 0.50 | 19.404 | 19.377 | 19.335 | 19.421 | 19.395 | 19.354 |
| 0.5 | 0.75 | 19.489 | 19.469 | 19.427 | 19.504 | 19.484 | 19.444 |
| 0.9 | 0.25 | 19.592 | 19.515 | 19.413 | 19.612 | 19.535 | 19.433 |
| 0.9 | 0.50 | 19.872 | 19.779 | 19.628 | 19.892 | 19.798 | 19.647 |
| 0.9 | 0.75 | 20.725 | 20.663 | 20.488 | 20.743 | 20.676 | 20.502 |
| 1.1 | 0.25 | 19.850 | 19.699 | 19.519 | 19.874 | 19.721 | 19.539 |
| 1.1 | 0.50 | 20.708 | 20.401 | 20.025 | 20.733 | 20.421 | 20.043 |
| 1.1 | 0.75 | 27.427 | 25.388 | 23.892 | 27.460 | 25.426 | 23.959 |

Table 5: Loss: invariant optimised Taylor rule

| $\rho_{1}^{q}$ | $p_{11}$ | $\mathrm{TR}+\mathrm{q}$ I |  |  | TR I |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $p_{22}$ |  |  | $p_{22}$ |  |  |
|  |  | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 |
| 0.5 | 0.25 | 19.241 | 19.216 | 19.180 | 19.260 | 19.237 | 19.203 |
| 0.5 | 0.50 | 19.289 | 19.264 | 19.221 | 19.307 | 19.283 | 19.243 |
| 0.5 | 0.75 | 19.375 | 19.356 | 19.315 | 19.391 | 19.373 | 19.334 |
| 0.9 | 0.25 | 19.490 | 19.412 | 19.306 | 19.505 | 19.430 | 19.328 |
| 0.9 | 0.50 | 19.788 | 19.691 | 19.532 | 19.799 | 19.705 | 19.551 |
| 0.9 | 0.75 | 20.693 | 20.620 | 20.427 | 20.694 | 20.622 | 20.431 |
| 1.1 | 0.25 | 19.770 | 19.611 | 19.420 | 19.784 | 19.629 | 19.442 |
| 1.1 | 0.50 | 20.698 | 20.362 | 19.955 | 20.703 | 20.370 | 19.968 |
| 1.1 | 0.75 | 28.807 | 25.935 | 24.001 | 28.886 | 25.986 | 24.034 |
|  |  | $\mathrm{TR}+\mathrm{q}$ RI |  |  | TR RI |  |  |
|  |  | $p_{22}$ |  |  | $p_{22}$ |  |  |
| $\rho_{1}^{q}$ | $p_{11}$ | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 |
| 0.5 | 0.25 | 19.359 | 19.332 | 19.296 | 19.375 | 19.350 | 19.315 |
| 0.5 | 0.50 | 19.406 | 19.379 | 19.336 | 19.421 | 19.396 | 19.354 |
| 0.5 | 0.75 | 19.491 | 19.470 | 19.428 | 19.504 | 19.485 | 19.444 |
| 0.9 | 0.25 | 19.600 | 19.521 | 19.416 | 19.614 | 19.537 | 19.434 |
| 0.9 | 0.50 | 19.889 | 19.791 | 19.634 | 19.898 | 19.803 | 19.649 |
| 0.9 | 0.75 | 20.775 | 20.698 | 20.506 | 20.775 | 20.699 | 20.509 |
| 1.1 | 0.25 | 19.867 | 19.709 | 19.523 | 19.879 | 19.725 | 19.541 |
| 1.1 | 0.50 | 20.768 | 20.437 | 20.039 | 20.771 | 20.443 | 20.050 |
| 1.1 | 0.75 | 28.817 | 25.949 | 24.029 | 28.960 | 26.025 | 24.074 |

Table 6: Loss: inflation forecast targeting rule

| $\rho_{1}^{q}$ | $p_{11}$ | IFT+q |  |  | IFT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $p_{22}$ |  |  | $p_{22}$ |  |  |
|  |  | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 |
| 0.5 | 0.25 | 28.422 | 28.418 | 28.418 | 30.586 | 30.573 | 30.559 |
| 0.5 | 0.50 | 28.428 | 28.425 | 28.424 | 30.610 | 30.597 | 30.579 |
| 0.5 | 0.75 | 28.451 | 28.448 | 28.446 | 30.661 | 30.651 | 30.632 |
| 0.9 | 0.25 | 28.519 | 28.485 | 28.454 | 30.799 | 30.733 | 30.654 |
| 0.9 | 0.50 | 28.629 | 28.584 | 28.529 | 31.031 | 30.937 | 30.808 |
| 0.9 | 0.75 | 29.121 | 29.060 | 28.940 | 31.868 | 31.729 | 31.495 |
| 1.1 | 0.25 | 28.652 | 28.571 | 28.496 | 31.083 | 30.920 | 30.751 |
| 1.1 | 0.50 | 29.079 | 28.894 | 28.704 | 31.934 | 31.536 | 31.141 |
| 1.1 | 0.75 | 34.528 | 32.421 | 30.971 | 41.639 | 37.125 | 34.543 |
|  |  | IFT + q I |  |  | IFT I |  |  |
|  |  | $p_{22}$ |  |  | $p_{22}$ |  |  |
| $\rho_{1}^{q}$ | $p_{11}$ | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 |
| 0.5 | 0.25 | 28.422 | 28.418 | 28.418 | 30.586 | 30.573 | 30.559 |
| 0.5 | 0.50 | 28.428 | 28.425 | 28.424 | 30.610 | 30.597 | 30.579 |
| 0.5 | 0.75 | 28.451 | 28.448 | 28.446 | 30.661 | 30.651 | 30.632 |
| 0.9 | 0.25 | 28.520 | 28.486 | 28.454 | 30.799 | 30.733 | 30.655 |
| 0.9 | 0.50 | 28.629 | 28.584 | 28.530 | 31.031 | 30.937 | 30.808 |
| 0.9 | 0.75 | 29.123 | 29.063 | 28.942 | 31.868 | 31.729 | 31.496 |
| 1.1 | 0.25 | 28.654 | 28.572 | 28.496 | 31.084 | 30.921 | 30.752 |
| 1.1 | 0.50 | 29.079 | 28.894 | 28.705 | 31.936 | 31.537 | 31.141 |
| 1.1 | 0.75 | 34.576 | 32.472 | 31.008 | 41.712 | 37.162 | 34.562 |

Table 7: Variance of the exchange rate - 1

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | Optimal | TR+q | TR | IFT+q | IFT | TRo | TR+q R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 44.263 | 46.725 | 45.423 | 44.597 | 56.045 | 43.301 | 46.255 |
| 0.25 | 0.5 | 0.5 | 44.143 | 46.657 | 45.31 | 44.421 | 55.79 | 43.156 | 46.172 |
| 0.25 | 0.75 | 0.5 | 43.983 | 46.565 | 45.163 | 44.182 | 55.446 | 42.964 | 46.047 |
| 0.5 | 0.25 | 0.5 | 44.522 | 46.924 | 45.652 | 44.92 | 56.547 | 43.6 | 46.465 |
| 0.5 | 0.5 | 0.5 | 44.374 | 46.815 | 45.506 | 44.712 | 56.239 | 43.418 | 46.344 |
| 0.5 | 0.75 | 0.5 | 44.152 | 46.663 | 45.295 | 44.393 | 55.774 | 43.148 | 46.17 |
| 0.75 | 0.25 | 0.5 | 45.058 | 47.287 | 46.129 | 45.547 | 57.529 | 44.212 | 46.895 |
| 0.75 | 0.5 | 0.5 | 44.895 | 47.178 | 45.957 | 45.324 | 57.2 | 44.003 | 46.752 |
| 0.75 | 0.75 | 0.5 | 44.594 | 46.936 | 45.649 | 44.911 | 56.594 | 43.627 | 46.481 |
| 0.25 | 0.25 | 0.9 | 45.23 | 47.623 | 46.431 | 45.99 | 58.254 | 44.652 | 47.263 |
| 0.25 | 0.5 | 0.9 | 44.866 | 47.298 | 45.986 | 45.399 | 57.351 | 44.088 | 46.864 |
| 0.25 | 0.75 | 0.9 | 44.404 | 46.874 | 45.49 | 44.7 | 56.285 | 43.444 | 46.398 |
| 0.5 | 0.25 | 0.9 | 47.182 | 49.355 | 48.319 | 48.264 | 61.863 | 47.023 | 49.066 |
| 0.5 | 0.5 | 0.9 | 46.503 | 48.512 | 47.359 | 47.14 | 60.157 | 45.869 | 48.171 |
| 0.5 | 0.75 | 0.9 | 45.513 | 47.507 | 46.227 | 45.734 | 58.003 | 44.467 | 47.086 |
| 0.75 | 0.25 | 0.9 | 56.875 | 57.495 | 57.402 | 58.652 | 76.441 | 57.776 | 57.587 |
| 0.75 | 0.5 | 0.9 | 55.237 | 54.9 | 54.356 | 55.389 | 72.107 | 54.417 | 54.67 |
| 0.75 | 0.75 | 0.9 | 52.23 | 50.999 | 50.341 | 50.873 | 65.956 | 49.79 | 50.693 |
| 0.25 | 0.25 | 1.1 | 46.12 | 49.013 | 47.834 | 47.745 | 61.068 | 46.474 | 48.744 |
| 0.25 | 0.5 | 1.1 | 45.532 | 48.056 | 46.754 | 46.417 | 59.018 | 45.131 | 47.691 |
| 0.25 | 0.75 | 1.1 | 44.791 | 47.196 | 45.789 | 45.143 | 57.031 | 43.884 | 46.735 |
| 0.5 | 0.25 | 1.1 | 52.247 | 56.288 | 55.391 | 56.39 | 74.257 | 55.592 | 55.981 |
| 0.5 | 0.5 | 1.1 | 50.603 | 52.048 | 51.07 | 51.619 | 67.225 | 50.584 | 51.811 |
| 0.5 | 0.75 | 1.1 | 48.166 | 48.768 | 47.689 | 47.606 | 61.13 | 46.413 | 48.436 |
| 0.75 | 0.25 | 1.1 | 207.04 | 210.14 | 211.03 | 226.71 | 277.5 | 225.5 | 209.36 |
| 0.75 | 0.5 | 1.1 | 188.17 | 115.68 | 116.73 | 126.74 | 159.42 | 125.11 | 115.34 |
| 0.75 | 0.75 | 1.1 | 151.52 | 70.244 | 71.464 | 77.02 | 99.965 | 75.595 | 70.084 |
|  |  |  |  |  |  |  |  |  |  |

Table 8: Variance of the exchange rate - 2

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | TR R | TR +q RI | TR RI | TR + q I | TR I | IFT+q I | IFT I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 45.081 | 46.252 | 45.081 | 46.659 | 45.404 | 44.597 | 56.045 |
| 0.25 | 0.5 | 0.5 | 44.967 | 46.165 | 44.964 | 46.607 | 45.295 | 44.421 | 55.79 |
| 0.25 | 0.75 | 0.5 | 44.825 | 46.045 | 44.812 | 46.564 | 45.157 | 44.181 | 55.446 |
| 0.5 | 0.25 | 0.5 | 45.324 | 46.466 | 45.321 | 46.853 | 45.635 | 44.919 | 56.547 |
| 0.5 | 0.5 | 0.5 | 45.172 | 46.349 | 45.171 | 46.81 | 45.494 | 44.711 | 56.239 |
| 0.5 | 0.75 | 0.5 | 44.96 | 46.165 | 44.952 | 46.64 | 45.289 | 44.393 | 55.774 |
| 0.75 | 0.25 | 0.5 | 45.822 | 46.894 | 45.821 | 47.252 | 46.108 | 45.547 | 57.529 |
| 0.75 | 0.5 | 0.5 | 45.644 | 46.753 | 45.643 | 47.179 | 45.943 | 45.323 | 57.2 |
| 0.75 | 0.75 | 0.5 | 45.328 | 46.482 | 45.326 | 46.901 | 45.648 | 44.91 | 56.593 |
| 0.25 | 0.25 | 0.9 | 46.154 | 47.256 | 46.151 | 47.579 | 46.413 | 45.994 | 58.257 |
| 0.25 | 0.5 | 0.9 | 45.687 | 46.864 | 45.685 | 47.239 | 45.978 | 45.401 | 57.353 |
| 0.25 | 0.75 | 0.9 | 45.172 | 46.404 | 45.165 | 46.874 | 45.49 | 44.7 | 56.286 |
| 0.5 | 0.25 | 0.9 | 48.124 | 49.052 | 48.115 | 49.347 | 48.307 | 48.267 | 61.867 |
| 0.5 | 0.5 | 0.9 | 47.126 | 48.171 | 47.121 | 48.534 | 47.362 | 47.139 | 60.159 |
| 0.5 | 0.75 | 0.9 | 45.947 | 47.093 | 45.947 | 47.52 | 46.225 | 45.733 | 58.004 |
| 0.75 | 0.25 | 0.9 | 57.418 | 57.501 | 57.37 | 57.663 | 57.281 | 58.642 | 76.44 |
| 0.75 | 0.5 | 0.9 | 54.353 | 54.64 | 54.34 | 54.868 | 54.335 | 55.369 | 72.106 |
| 0.75 | 0.75 | 0.9 | 50.222 | 50.726 | 50.239 | 50.993 | 50.359 | 50.849 | 65.955 |
| 0.25 | 0.25 | 1.1 | 47.644 | 48.744 | 47.636 | 49.012 | 47.827 | 47.761 | 61.081 |
| 0.25 | 0.5 | 1.1 | 46.511 | 47.703 | 46.506 | 48.09 | 46.762 | 46.425 | 59.026 |
| 0.25 | 0.75 | 1.1 | 45.49 | 46.745 | 45.489 | 47.182 | 45.805 | 45.145 | 57.035 |
| 0.5 | 0.25 | 1.1 | 55.403 | 55.957 | 55.361 | 56.029 | 55.262 | 56.396 | 74.278 |
| 0.5 | 0.5 | 1.1 | 51.004 | 51.815 | 50.992 | 52.01 | 51.047 | 51.617 | 67.235 |
| 0.5 | 0.75 | 1.1 | 47.44 | 48.45 | 47.446 | 48.785 | 47.647 | 47.602 | 61.135 |
| 0.75 | 0.25 | 1.1 | 212.44 | 204.28 | 210.55 | 204.46 | 208.83 | 227.02 | 278.16 |
| 0.75 | 0.5 | 1.1 | 117.68 | 113.75 | 117.45 | 113.85 | 116.8 | 126.91 | 159.74 |
| 0.75 | 0.75 | 1.1 | 71.928 | 69.819 | 72.216 | 69.97 | 72.023 | 77.009 | 100.12 |

Table 9: Variance of $\pi^{d}-1$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | Optimal | TR +q | TR | IFT+q | IFT | TRo | $\mathrm{TR}+\mathrm{q}$ R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 7.6157 | 8.6583 | 8.7011 | 10.763 | 11.407 | 10.25 | 8.7532 |
| 0.25 | 0.5 | 0.5 | 7.6154 | 8.6525 | 8.6972 | 10.77 | 11.411 | 10.25 | 8.7456 |
| 0.25 | 0.75 | 0.5 | 7.615 | 8.6438 | 8.6899 | 10.785 | 11.417 | 10.25 | 8.7348 |
| 0.5 | 0.25 | 0.5 | 7.6164 | 8.6738 | 8.7145 | 10.75 | 11.402 | 10.251 | 8.7678 |
| 0.5 | 0.5 | 0.5 | 7.616 | 8.6702 | 8.7104 | 10.758 | 11.406 | 10.251 | 8.7603 |
| 0.5 | 0.75 | 0.5 | 7.6154 | 8.6575 | 8.7026 | 10.775 | 11.413 | 10.25 | 8.7476 |
| 0.75 | 0.25 | 0.5 | 7.6177 | 8.7015 | 8.7385 | 10.734 | 11.395 | 10.252 | 8.7945 |
| 0.75 | 0.5 | 0.5 | 7.6172 | 8.6975 | 8.7358 | 10.741 | 11.398 | 10.252 | 8.7903 |
| 0.75 | 0.75 | 0.5 | 7.6165 | 8.6874 | 8.7288 | 10.758 | 11.406 | 10.251 | 8.7758 |
| 0.25 | 0.25 | 0.9 | 7.6181 | 8.7449 | 8.7762 | 10.751 | 11.439 | 10.253 | 8.8325 |
| 0.25 | 0.5 | 0.9 | 7.6172 | 8.7264 | 8.7663 | 10.753 | 11.432 | 10.252 | 8.8108 |
| 0.25 | 0.75 | 0.9 | 7.6161 | 8.6913 | 8.7375 | 10.769 | 11.428 | 10.251 | 8.7765 |
| 0.5 | 0.25 | 0.9 | 7.6227 | 8.8419 | 8.877 | 10.722 | 11.452 | 10.258 | 8.9201 |
| 0.5 | 0.5 | 0.9 | 7.6211 | 8.8171 | 8.8557 | 10.727 | 11.439 | 10.255 | 8.8945 |
| 0.5 | 0.75 | 0.9 | 7.6187 | 8.7699 | 8.8121 | 10.749 | 11.429 | 10.252 | 8.8463 |
| 0.75 | 0.25 | 0.9 | 7.6407 | 9.0913 | 9.0768 | 10.713 | 11.516 | 10.295 | 9.1639 |
| 0.75 | 0.5 | 0.9 | 7.6375 | 9.0695 | 9.0834 | 10.716 | 11.479 | 10.282 | 9.1588 |
| 0.75 | 0.75 | 0.9 | 7.6315 | 9.064 | 9.0896 | 10.733 | 11.438 | 10.267 | 9.1161 |
| 0.25 | 0.25 | 1.1 | 7.6203 | 8.8497 | 8.8714 | 10.757 | 11.505 | 10.256 | 8.9263 |
| 0.25 | 0.5 | 1.1 | 7.6189 | 8.7975 | 8.8446 | 10.75 | 11.47 | 10.253 | 8.876 |
| 0.25 | 0.75 | 1.1 | 7.617 | 8.7361 | 8.7822 | 10.762 | 11.444 | 10.251 | 8.8153 |
| 0.5 | 0.25 | 1.1 | 7.6337 | 9.0889 | 9.0964 | 10.715 | 11.616 | 10.28 | 9.184 |
| 0.5 | 0.5 | 1.1 | 7.6301 | 9.0483 | 9.0367 | 10.716 | 11.521 | 10.267 | 9.0979 |
| 0.5 | 0.75 | 1.1 | 7.6245 | 8.9199 | 8.9183 | 10.738 | 11.457 | 10.257 | 8.9787 |
| 0.75 | 0.25 | 1.1 | 7.8494 | 9.8478 | 9.8925 | 10.777 | 12.623 | 11.239 | 10.14 |
| 0.75 | 0.5 | 1.1 | 7.8223 | 10.159 | 10.464 | 10.771 | 11.806 | 10.649 | 10.268 |
| 0.75 | 0.75 | 1.1 | 7.7696 | 10.095 | 10.071 | 10.766 | 11.45 | 10.379 | 10.135 |

Table 10: Variance of $\pi^{d}-2$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | TR R | TR + q RI | TR RI | TR + q I | TR I | IFT+q I | IFT I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 8.779 | 8.7541 | 8.7789 | 8.6565 | 8.7156 | 10.763 | 11.407 |
| 0.25 | 0.5 | 0.5 | 8.7702 | 8.7463 | 8.7722 | 8.6519 | 8.7082 | 10.77 | 11.411 |
| 0.25 | 0.75 | 0.5 | 8.753 | 8.7352 | 8.7618 | 8.6448 | 8.6941 | 10.785 | 11.417 |
| 0.5 | 0.25 | 0.5 | 8.7915 | 8.769 | 8.7931 | 8.6725 | 8.7278 | 10.75 | 11.402 |
| 0.5 | 0.5 | 0.5 | 8.7858 | 8.7613 | 8.7858 | 8.6701 | 8.7204 | 10.758 | 11.406 |
| 0.5 | 0.75 | 0.5 | 8.7688 | 8.748 | 8.774 | 8.6585 | 8.707 | 10.775 | 11.413 |
| 0.75 | 0.25 | 0.5 | 8.8172 | 8.798 | 8.8168 | 8.6998 | 8.7541 | 10.735 | 11.395 |
| 0.75 | 0.5 | 0.5 | 8.8118 | 8.7894 | 8.8124 | 8.6991 | 8.7467 | 10.741 | 11.398 |
| 0.75 | 0.75 | 0.5 | 8.8 | 8.7777 | 8.8015 | 8.6875 | 8.7324 | 10.758 | 11.406 |
| 0.25 | 0.25 | 0.9 | 8.8604 | 8.8373 | 8.8606 | 8.7496 | 8.7996 | 10.752 | 11.439 |
| 0.25 | 0.5 | 0.9 | 8.8368 | 8.8128 | 8.8373 | 8.7275 | 8.7718 | 10.753 | 11.432 |
| 0.25 | 0.75 | 0.9 | 8.7997 | 8.7791 | 8.8043 | 8.6974 | 8.736 | 10.768 | 11.428 |
| 0.5 | 0.25 | 0.9 | 8.9451 | 8.9319 | 8.9487 | 8.8597 | 8.8806 | 10.723 | 11.452 |
| 0.5 | 0.5 | 0.9 | 8.9189 | 8.9008 | 8.9218 | 8.8341 | 8.8495 | 10.727 | 11.439 |
| 0.5 | 0.75 | 0.9 | 8.8727 | 8.8502 | 8.8738 | 8.7749 | 8.8147 | 10.749 | 11.429 |
| 0.75 | 0.25 | 0.9 | 9.1745 | 9.2009 | 9.2023 | 9.1538 | 9.1644 | 10.713 | 11.516 |
| 0.75 | 0.5 | 0.9 | 9.1714 | 9.1796 | 9.1838 | 9.1297 | 9.151 | 10.717 | 11.479 |
| 0.75 | 0.75 | 0.9 | 9.1274 | 9.1204 | 9.1295 | 9.0767 | 9.0961 | 10.736 | 11.438 |
| 0.25 | 0.25 | 1.1 | 8.9526 | 8.9346 | 8.9563 | 8.8621 | 8.8904 | 10.759 | 11.506 |
| 0.25 | 0.5 | 1.1 | 8.9037 | 8.8813 | 8.9064 | 8.8169 | 8.8358 | 10.751 | 11.471 |
| 0.25 | 0.75 | 1.1 | 8.8436 | 8.8185 | 8.8445 | 8.7405 | 8.7705 | 10.762 | 11.444 |
| 0.5 | 0.25 | 1.1 | 9.2038 | 9.2284 | 9.2389 | 9.1938 | 9.2121 | 10.715 | 11.617 |
| 0.5 | 0.5 | 1.1 | 9.1206 | 9.1174 | 9.1337 | 9.0758 | 9.1037 | 10.716 | 11.522 |
| 0.5 | 0.75 | 1.1 | 9.0036 | 8.9864 | 9.007 | 8.9316 | 8.9661 | 10.738 | 11.457 |
| 0.75 | 0.25 | 1.1 | 10.059 | 11.516 | 11.462 | 11.593 | 11.628 | 10.777 | 12.597 |
| 0.75 | 0.5 | 1.1 | 10.21 | 10.755 | 10.651 | 10.792 | 10.761 | 10.785 | 11.79 |
| 0.75 | 0.75 | 1.1 | 10.08 | 10.209 | 10.149 | 10.24 | 10.182 | 10.793 | 11.44 |

Table 11: Variance of $y-1$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | Optimal | TR+q | TR | IFT+q | IFT | TRo | TR+q R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 7.3605 | 8.0302 | 8.0691 | 10.18 | 10.199 | 8.1065 | 8.0881 |
| 0.25 | 0.5 | 0.5 | 7.3589 | 8.0288 | 8.0677 | 10.177 | 10.192 | 8.1039 | 8.0897 |
| 0.25 | 0.75 | 0.5 | 7.3566 | 8.0281 | 8.0676 | 10.166 | 10.182 | 8.1002 | 8.0934 |
| 0.5 | 0.25 | 0.5 | 7.3636 | 8.0254 | 8.0651 | 10.188 | 10.212 | 8.1113 | 8.0828 |
| 0.5 | 0.5 | 0.5 | 7.3617 | 8.0216 | 8.0638 | 10.184 | 10.204 | 8.1086 | 8.0844 |
| 0.5 | 0.75 | 0.5 | 7.3587 | 8.0234 | 8.0625 | 10.173 | 10.19 | 8.1041 | 8.0876 |
| 0.75 | 0.25 | 0.5 | 7.3691 | 8.0212 | 8.0586 | 10.194 | 10.234 | 8.12 | 8.0745 |
| 0.75 | 0.5 | 0.5 | 7.3672 | 8.0174 | 8.0568 | 10.192 | 10.226 | 8.1178 | 8.0727 |
| 0.75 | 0.75 | 0.5 | 7.3636 | 8.0148 | 8.0547 | 10.183 | 10.21 | 8.1132 | 8.0771 |
| 0.25 | 0.25 | 0.9 | 7.3741 | 7.9906 | 8.0418 | 10.199 | 10.215 | 8.1297 | 8.0473 |
| 0.25 | 0.5 | 0.9 | 7.3696 | 7.988 | 8.0313 | 10.201 | 10.204 | 8.122 | 8.0529 |
| 0.25 | 0.75 | 0.9 | 7.3631 | 8.001 | 8.04 | 10.188 | 10.189 | 8.1115 | 8.0681 |
| 0.5 | 0.25 | 0.9 | 7.3936 | 7.9587 | 7.9913 | 10.213 | 10.27 | 8.1588 | 8.0173 |
| 0.5 | 0.5 | 0.9 | 7.3865 | 7.9583 | 7.9936 | 10.214 | 10.249 | 8.1487 | 8.0203 |
| 0.5 | 0.75 | 0.9 | 7.3751 | 7.9672 | 8.0058 | 10.201 | 10.218 | 8.1322 | 8.0363 |
| 0.75 | 0.25 | 0.9 | 7.4587 | 7.9656 | 7.9855 | 10.176 | 10.47 | 8.25 | 7.9895 |
| 0.75 | 0.5 | 0.9 | 7.4466 | 7.945 | 7.9688 | 10.194 | 10.419 | 8.24 | 7.9616 |
| 0.75 | 0.75 | 0.9 | 7.4229 | 7.8825 | 7.8969 | 10.212 | 10.34 | 8.2158 | 7.9542 |
| 0.25 | 0.25 | 1.1 | 7.3861 | 7.9315 | 7.9963 | 10.215 | 10.217 | 8.1556 | 7.9921 |
| 0.25 | 0.5 | 1.1 | 7.3791 | 7.9499 | 7.9847 | 10.217 | 10.206 | 8.1401 | 8.0144 |
| 0.25 | 0.75 | 1.1 | 7.369 | 7.9724 | 8.0135 | 10.201 | 10.191 | 8.1216 | 8.0432 |
| 0.5 | 0.25 | 1.1 | 7.4426 | 7.8971 | 7.9518 | 10.225 | 10.372 | 8.2477 | 7.9258 |
| 0.5 | 0.5 | 1.1 | 7.4271 | 7.8578 | 7.9537 | 10.232 | 10.314 | 8.2123 | 7.9338 |
| 0.5 | 0.75 | 1.1 | 7.402 | 7.9001 | 7.9751 | 10.221 | 10.252 | 8.1703 | 7.9744 |
| 0.75 | 0.25 | 1.1 | 8.1493 | 8.4969 | 8.3885 | 10.076 | 12.448 | 9.152 | 8.3701 |
| 0.75 | 0.5 | 1.1 | 8.0602 | 7.9925 | 7.5688 | 10.127 | 11.367 | 8.7933 | 7.9977 |
| 0.75 | 0.75 | 1.1 | 7.8829 | 7.8024 | 7.6659 | 10.237 | 10.753 | 8.5607 | 7.8268 |
|  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |

Table 12: Variance of $y-2$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | TR R | TR +q RI | TR RI | TR+q I | TR I | IFT+q I | IFT I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 8.1404 | 8.0872 | 8.1406 | 8.0356 | 8.0534 | 10.18 | 10.199 |
| 0.25 | 0.5 | 0.5 | 8.1452 | 8.0892 | 8.1431 | 8.0318 | 8.056 | 10.177 | 10.192 |
| 0.25 | 0.75 | 0.5 | 8.1572 | 8.093 | 8.1477 | 8.0268 | 8.0631 | 10.166 | 10.182 |
| 0.5 | 0.25 | 0.5 | 8.1358 | 8.0814 | 8.134 | 8.0306 | 8.0506 | 10.188 | 10.212 |
| 0.5 | 0.5 | 0.5 | 8.1369 | 8.0827 | 8.1368 | 8.0218 | 8.0527 | 10.184 | 10.204 |
| 0.5 | 0.75 | 0.5 | 8.1471 | 8.087 | 8.1414 | 8.0223 | 8.0576 | 10.173 | 10.191 |
| 0.75 | 0.25 | 0.5 | 8.1242 | 8.0703 | 8.1246 | 8.0244 | 8.0418 | 10.194 | 10.234 |
| 0.75 | 0.5 | 0.5 | 8.1258 | 8.0733 | 8.1251 | 8.0148 | 8.0447 | 10.192 | 10.226 |
| 0.75 | 0.75 | 0.5 | 8.1299 | 8.0744 | 8.1282 | 8.0156 | 8.0497 | 10.183 | 10.21 |
| 0.25 | 0.25 | 0.9 | 8.0933 | 8.0429 | 8.0935 | 7.988 | 8.012 | 10.199 | 10.215 |
| 0.25 | 0.5 | 0.9 | 8.1049 | 8.0505 | 8.1045 | 7.9899 | 8.0251 | 10.201 | 10.204 |
| 0.25 | 0.75 | 0.9 | 8.1264 | 8.0644 | 8.1212 | 7.9926 | 8.0414 | 10.188 | 10.189 |
| 0.5 | 0.25 | 0.9 | 8.0557 | 8.006 | 8.0525 | 7.9392 | 7.9884 | 10.213 | 10.27 |
| 0.5 | 0.5 | 0.9 | 8.0658 | 8.0126 | 8.0623 | 7.9358 | 7.9995 | 10.214 | 10.249 |
| 0.5 | 0.75 | 0.9 | 8.0855 | 8.0299 | 8.0837 | 7.9581 | 8.0019 | 10.201 | 10.218 |
| 0.75 | 0.25 | 0.9 | 7.9925 | 7.9484 | 7.9559 | 7.8726 | 7.8883 | 10.176 | 10.47 |
| 0.75 | 0.5 | 0.9 | 7.9709 | 7.9391 | 7.9562 | 7.8651 | 7.8811 | 10.192 | 10.419 |
| 0.75 | 0.75 | 0.9 | 7.9723 | 7.9407 | 7.968 | 7.8589 | 7.8864 | 10.207 | 10.34 |
| 0.25 | 0.25 | 1.1 | 8.0391 | 7.9851 | 8.0362 | 7.9198 | 7.9684 | 10.213 | 10.217 |
| 0.25 | 0.5 | 1.1 | 8.0645 | 8.0081 | 8.0617 | 7.9258 | 7.994 | 10.216 | 10.207 |
| 0.25 | 0.75 | 1.1 | 8.0965 | 8.0385 | 8.0953 | 7.967 | 8.0248 | 10.202 | 10.191 |
| 0.5 | 0.25 | 1.1 | 7.948 | 7.8765 | 7.9039 | 7.7906 | 7.824 | 10.225 | 10.373 |
| 0.5 | 0.5 | 1.1 | 7.9658 | 7.9124 | 7.9513 | 7.8274 | 7.8642 | 10.232 | 10.315 |
| 0.5 | 0.75 | 1.1 | 8.0155 | 7.9609 | 8.0099 | 7.879 | 7.9213 | 10.22 | 10.252 |
| 0.75 | 0.25 | 1.1 | 8.283 | 7.4809 | 7.2296 | 7.3573 | 7.0552 | 10.08 | 12.524 |
| 0.75 | 0.5 | 1.1 | 7.8862 | 7.6211 | 7.4576 | 7.5363 | 7.3295 | 10.121 | 11.406 |
| 0.75 | 0.75 | 1.1 | 7.6775 | 7.7331 | 7.5636 | 7.6381 | 7.4911 | 10.215 | 10.771 |
|  |  |  |  |  |  |  |  |  |  |

Table 13: Variance of $\pi-1$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | Optimal | TR +q | TR | IFT+q | IFT | TRo | $\mathrm{TR}+\mathrm{q} R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 6.7138 | 7.9531 | 7.94 | 11.577 | 12.904 | 9.6091 | 8.0766 |
| 0.25 | 0.5 | 0.5 | 6.7052 | 7.9432 | 7.9303 | 11.572 | 12.886 | 9.601 | 8.0636 |
| 0.25 | 0.75 | 0.5 | 6.6921 | 7.9282 | 7.9144 | 11.571 | 12.863 | 9.5898 | 8.0441 |
| 0.5 | 0.25 | 0.5 | 6.7317 | 7.9796 | 7.9654 | 11.585 | 12.935 | 9.624 | 8.1029 |
| 0.5 | 0.5 | 0.5 | 6.7215 | 7.9719 | 7.9552 | 11.58 | 12.917 | 9.6155 | 8.0894 |
| 0.5 | 0.75 | 0.5 | 6.7045 | 7.9506 | 7.9371 | 11.578 | 12.889 | 9.6017 | 8.0667 |
| 0.75 | 0.25 | 0.5 | 6.7623 | 8.0246 | 8.0112 | 11.608 | 12.994 | 9.6518 | 8.1499 |
| 0.75 | 0.5 | 0.5 | 6.7522 | 8.0185 | 8.0036 | 11.605 | 12.98 | 9.6446 | 8.1418 |
| 0.75 | 0.75 | 0.5 | 6.7318 | 8.0004 | 7.9864 | 11.601 | 12.953 | 9.6301 | 8.1168 |
| 0.25 | 0.25 | 0.9 | 6.7926 | 8.0969 | 8.0776 | 11.668 | 13.118 | 9.6792 | 8.2174 |
| 0.25 | 0.5 | 0.9 | 6.7683 | 8.0655 | 8.0475 | 11.635 | 13.048 | 9.6551 | 8.178 |
| 0.25 | 0.75 | 0.9 | 6.7317 | 8.006 | 7.9926 | 11.605 | 12.962 | 9.6232 | 8.1173 |
| 0.5 | 0.25 | 0.9 | 6.9021 | 8.2656 | 8.2539 | 11.772 | 13.349 | 9.7727 | 8.3781 |
| 0.5 | 0.5 | 0.9 | 6.8642 | 8.2207 | 8.2082 | 11.731 | 13.257 | 9.7396 | 8.3297 |
| 0.5 | 0.75 | 0.9 | 6.8 | 8.1364 | 8.1229 | 11.678 | 13.124 | 9.6878 | 8.2404 |
| 0.75 | 0.25 | 0.9 | 7.2299 | 8.7392 | 8.7099 | 12.248 | 14.058 | 10.096 | 8.8486 |
| 0.75 | 0.5 | 0.9 | 7.1693 | 8.7032 | 8.691 | 12.185 | 13.957 | 10.055 | 8.821 |
| 0.75 | 0.75 | 0.9 | 7.0457 | 8.6336 | 8.632 | 12.061 | 13.764 | 9.9698 | 8.7169 |
| 0.25 | 0.25 | 1.1 | 6.8629 | 8.2727 | 8.2454 | 11.787 | 13.381 | 9.7568 | 8.3838 |
| 0.25 | 0.5 | 1.1 | 6.8248 | 8.1852 | 8.176 | 11.712 | 13.225 | 9.709 | 8.2941 |
| 0.25 | 0.75 | 1.1 | 6.7672 | 8.0801 | 8.0654 | 11.643 | 13.056 | 9.6529 | 8.185 |
| 0.5 | 0.25 | 1.1 | 7.1737 | 8.7678 | 8.7268 | 12.192 | 14.167 | 10.058 | 8.8813 |
| 0.5 | 0.5 | 1.1 | 7.0915 | 8.6236 | 8.5709 | 12.018 | 13.817 | 9.9421 | 8.7036 |
| 0.5 | 0.75 | 1.1 | 6.9523 | 8.3859 | 8.3272 | 11.839 | 13.447 | 9.8083 | 8.4739 |
| 0.75 | 0.25 | 1.1 | 10.5 | 12.63 | 12.724 | 17.522 | 21.363 | 13.901 | 12.947 |
| 0.75 | 0.5 | 1.1 | 10.081 | 11.563 | 11.995 | 15.444 | 18.184 | 12.246 | 11.688 |
| 0.75 | 0.75 | 1.1 | 9.2335 | 10.628 | 10.701 | 13.98 | 16.307 | 11.264 | 10.682 |

Table 14: Variance of $\pi-2$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | TR R | TR+q RI | TR RI | $\mathrm{TR}+\mathrm{q}$ I | TR I | IFT+q I | IFT I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 8.0492 | 8.0772 | 8.0489 | 7.9471 | 7.957 | 11.577 | 12.904 |
| 0.25 | 0.5 | 0.5 | 8.0332 | 8.0639 | 8.0354 | 7.9395 | 7.9432 | 11.573 | 12.886 |
| 0.25 | 0.75 | 0.5 | 8.0054 | 8.0443 | 8.0154 | 7.9292 | 7.9194 | 11.571 | 12.863 |
| 0.5 | 0.25 | 0.5 | 8.0742 | 8.1039 | 8.076 | 7.974 | 7.9809 | 11.585 | 12.935 |
| 0.5 | 0.5 | 0.5 | 8.0616 | 8.0906 | 8.0615 | 7.9713 | 7.9668 | 11.58 | 12.917 |
| 0.5 | 0.75 | 0.5 | 8.0322 | 8.067 | 8.0381 | 7.9502 | 7.9423 | 11.578 | 12.889 |
| 0.75 | 0.25 | 0.5 | 8.1234 | 8.1537 | 8.1228 | 8.02 | 8.0295 | 11.608 | 12.994 |
| 0.75 | 0.5 | 0.5 | 8.1123 | 8.1405 | 8.1128 | 8.0202 | 8.0162 | 11.605 | 12.98 |
| 0.75 | 0.75 | 0.5 | 8.0884 | 8.1192 | 8.0901 | 7.9985 | 7.9901 | 11.601 | 12.953 |
| 0.25 | 0.25 | 0.9 | 8.1943 | 8.221 | 8.1938 | 8.0983 | 8.1014 | 11.669 | 13.118 |
| 0.25 | 0.5 | 0.9 | 8.1499 | 8.1795 | 8.1499 | 8.0627 | 8.0533 | 11.635 | 13.048 |
| 0.25 | 0.75 | 0.9 | 8.0838 | 8.1204 | 8.089 | 8.0127 | 7.9905 | 11.604 | 12.962 |
| 0.5 | 0.25 | 0.9 | 8.3587 | 8.3874 | 8.3609 | 8.2822 | 8.2555 | 11.772 | 13.349 |
| 0.5 | 0.5 | 0.9 | 8.3055 | 8.3351 | 8.3075 | 8.2396 | 8.1986 | 11.731 | 13.257 |
| 0.5 | 0.75 | 0.9 | 8.2147 | 8.2453 | 8.2155 | 8.1426 | 8.1253 | 11.678 | 13.124 |
| 0.75 | 0.25 | 0.9 | 8.8484 | 8.8715 | 8.8669 | 8.791 | 8.7856 | 12.25 | 14.058 |
| 0.75 | 0.5 | 0.9 | 8.8188 | 8.8351 | 8.825 | 8.7516 | 8.7512 | 12.187 | 13.957 |
| 0.75 | 0.75 | 0.9 | 8.7078 | 8.7239 | 8.7086 | 8.6478 | 8.6374 | 12.062 | 13.764 |
| 0.25 | 0.25 | 1.1 | 8.3581 | 8.3897 | 8.3606 | 8.2839 | 8.259 | 11.79 | 13.383 |
| 0.25 | 0.5 | 1.1 | 8.2671 | 8.2989 | 8.2692 | 8.2082 | 8.164 | 11.713 | 13.226 |
| 0.25 | 0.75 | 1.1 | 8.1565 | 8.1889 | 8.1572 | 8.0842 | 8.0506 | 11.643 | 13.056 |
| 0.5 | 0.25 | 1.1 | 8.8706 | 8.9129 | 8.8972 | 8.846 | 8.8329 | 12.192 | 14.169 |
| 0.5 | 0.5 | 1.1 | 8.6879 | 8.719 | 8.6972 | 8.6459 | 8.6314 | 12.018 | 13.817 |
| 0.5 | 0.75 | 1.1 | 8.4534 | 8.4839 | 8.4563 | 8.4 | 8.3828 | 11.839 | 13.448 |
| 0.75 | 0.25 | 1.1 | 12.988 | 13.813 | 13.97 | 13.924 | 14.141 | 17.577 | 21.394 |
| 0.75 | 0.5 | 1.1 | 11.749 | 11.969 | 12.024 | 12.012 | 12.12 | 15.488 | 18.195 |
| 0.75 | 0.75 | 1.1 | 10.768 | 10.735 | 10.819 | 10.758 | 10.818 | 14 | 16.311 |

Table 15: Variance of $i-1$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | Optimal | TR+q | TR | IFT+q | IFT | TRo | TR + q R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 2.0443 | 11.144 | 11.115 | 21.285 | 22.959 | 12.154 | 11.374 |
| 0.25 | 0.5 | 0.5 | 2.0437 | 11.126 | 11.096 | 21.287 | 22.96 | 12.142 | 11.357 |
| 0.25 | 0.75 | 0.5 | 2.0429 | 11.101 | 11.068 | 21.296 | 22.963 | 12.125 | 11.331 |
| 0.5 | 0.25 | 0.5 | 2.0458 | 11.183 | 11.154 | 21.273 | 22.942 | 12.177 | 11.409 |
| 0.5 | 0.5 | 0.5 | 2.045 | 11.165 | 11.134 | 21.276 | 22.946 | 12.164 | 11.39 |
| 0.5 | 0.75 | 0.5 | 2.0438 | 11.132 | 11.1 | 21.287 | 22.953 | 12.143 | 11.359 |
| 0.75 | 0.25 | 0.5 | 2.0489 | 11.252 | 11.224 | 21.264 | 22.911 | 12.221 | 11.472 |
| 0.75 | 0.5 | 0.5 | 2.048 | 11.237 | 11.207 | 21.266 | 22.917 | 12.21 | 11.458 |
| 0.75 | 0.75 | 0.5 | 2.0464 | 11.204 | 11.174 | 21.275 | 22.93 | 12.187 | 11.424 |
| 0.25 | 0.25 | 0.9 | 2.0493 | 11.336 | 11.322 | 21.283 | 23.014 | 12.262 | 11.544 |
| 0.25 | 0.5 | 0.9 | 2.0475 | 11.281 | 11.255 | 21.273 | 22.995 | 12.224 | 11.491 |
| 0.25 | 0.75 | 0.9 | 2.0451 | 11.198 | 11.168 | 21.278 | 22.977 | 12.175 | 11.416 |
| 0.5 | 0.25 | 0.9 | 2.0609 | 11.566 | 11.55 | 21.265 | 22.929 | 12.411 | 11.75 |
| 0.5 | 0.5 | 0.9 | 2.0571 | 11.49 | 11.469 | 21.255 | 22.927 | 12.357 | 11.68 |
| 0.5 | 0.75 | 0.9 | 2.0516 | 11.364 | 11.338 | 21.261 | 22.934 | 12.275 | 11.564 |
| 0.75 | 0.25 | 0.9 | 2.1208 | 12.199 | 12.201 | 21.356 | 22.76 | 12.962 | 12.355 |
| 0.75 | 0.5 | 0.9 | 2.1109 | 12.144 | 12.135 | 21.323 | 22.776 | 12.881 | 12.297 |
| 0.75 | 0.75 | 0.9 | 2.0928 | 11.989 | 11.983 | 21.288 | 22.819 | 12.728 | 12.139 |
| 0.25 | 0.25 | 1.1 | 2.054 | 11.565 | 11.558 | 21.296 | 23.126 | 12.382 | 11.74 |
| 0.25 | 0.5 | 1.1 | 2.051 | 11.436 | 11.418 | 21.27 | 23.049 | 12.306 | 11.627 |
| 0.25 | 0.75 | 1.1 | 2.0472 | 11.286 | 11.26 | 21.268 | 22.995 | 12.22 | 11.492 |
| 0.5 | 0.25 | 1.1 | 2.0908 | 12.233 | 12.218 | 21.311 | 22.933 | 12.874 | 12.357 |
| 0.5 | 0.5 | 1.1 | 2.0813 | 11.98 | 11.963 | 21.268 | 22.901 | 12.679 | 12.121 |
| 0.5 | 0.75 | 1.1 | 2.0673 | 11.662 | 11.631 | 21.254 | 22.904 | 12.462 | 11.834 |
| 0.75 | 0.25 | 1.1 | 3.002 | 15.414 | 15.492 | 21.699 | 24.751 | 20.001 | 15.52 |
| 0.75 | 0.5 | 1.1 | 2.8913 | 14.716 | 14.923 | 21.585 | 23.597 | 16.741 | 14.822 |
| 0.75 | 0.75 | 1.1 | 2.6759 | 14.029 | 14.151 | 21.431 | 23.062 | 14.888 | 14.107 |

Table 16: Variance of $i-2$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | TR R | TR + q RI | TR RI | $\mathrm{TR}+\mathrm{q}$ I | TR I | IFT+q I | IFT I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 11.329 | 11.376 | 11.33 | 11.142 | 11.121 | 21.285 | 22.959 |
| 0.25 | 0.5 | 0.5 | 11.309 | 11.357 | 11.31 | 11.125 | 11.101 | 21.287 | 22.96 |
| 0.25 | 0.75 | 0.5 | 11.28 | 11.332 | 11.283 | 11.102 | 11.07 | 21.296 | 22.963 |
| 0.5 | 0.25 | 0.5 | 11.365 | 11.411 | 11.366 | 11.182 | 11.159 | 21.273 | 22.942 |
| 0.5 | 0.5 | 0.5 | 11.345 | 11.392 | 11.346 | 11.167 | 11.139 | 21.276 | 22.946 |
| 0.5 | 0.75 | 0.5 | 11.31 | 11.36 | 11.312 | 11.131 | 11.103 | 21.287 | 22.953 |
| 0.75 | 0.25 | 0.5 | 11.432 | 11.475 | 11.432 | 11.252 | 11.231 | 21.264 | 22.911 |
| 0.75 | 0.5 | 0.5 | 11.415 | 11.459 | 11.416 | 11.241 | 11.213 | 21.266 | 22.917 |
| 0.75 | 0.75 | 0.5 | 11.38 | 11.426 | 11.381 | 11.204 | 11.174 | 21.276 | 22.93 |
| 0.25 | 0.25 | 0.9 | 11.51 | 11.551 | 11.512 | 11.343 | 11.324 | 21.284 | 23.014 |
| 0.25 | 0.5 | 0.9 | 11.451 | 11.495 | 11.452 | 11.285 | 11.258 | 21.273 | 22.995 |
| 0.25 | 0.75 | 0.9 | 11.369 | 11.418 | 11.371 | 11.201 | 11.169 | 21.278 | 22.977 |
| 0.5 | 0.25 | 0.9 | 11.726 | 11.768 | 11.734 | 11.59 | 11.561 | 21.265 | 22.929 |
| 0.5 | 0.5 | 0.9 | 11.648 | 11.692 | 11.655 | 11.511 | 11.475 | 21.255 | 22.926 |
| 0.5 | 0.75 | 0.9 | 11.525 | 11.57 | 11.527 | 11.374 | 11.344 | 21.261 | 22.934 |
| 0.75 | 0.25 | 0.9 | 12.366 | 12.428 | 12.422 | 12.308 | 12.293 | 21.358 | 22.76 |
| 0.75 | 0.5 | 0.9 | 12.295 | 12.345 | 12.332 | 12.22 | 12.203 | 21.329 | 22.776 |
| 0.75 | 0.75 | 0.9 | 12.129 | 12.159 | 12.138 | 12.021 | 12 | 21.297 | 22.819 |
| 0.25 | 0.25 | 1.1 | 11.713 | 11.753 | 11.72 | 11.583 | 11.558 | 21.3 | 23.127 |
| 0.25 | 0.5 | 1.1 | 11.591 | 11.635 | 11.596 | 11.454 | 11.419 | 21.27 | 23.049 |
| 0.25 | 0.75 | 1.1 | 11.449 | 11.496 | 11.451 | 11.292 | 11.256 | 21.268 | 22.995 |
| 0.5 | 0.25 | 1.1 | 12.353 | 12.431 | 12.413 | 12.333 | 12.317 | 21.311 | 22.931 |
| 0.5 | 0.5 | 1.1 | 12.103 | 12.161 | 12.133 | 12.035 | 12.012 | 21.269 | 22.901 |
| 0.5 | 0.75 | 1.1 | 11.803 | 11.848 | 11.811 | 11.687 | 11.66 | 21.255 | 22.904 |
| 0.75 | 0.25 | 1.1 | 15.702 | 17.739 | 18.327 | 17.767 | 18.176 | 21.717 | 24.716 |
| 0.75 | 0.5 | 1.1 | 14.988 | 15.723 | 16.032 | 15.744 | 15.994 | 21.637 | 23.589 |
| 0.75 | 0.75 | 1.1 | 14.278 | 14.294 | 14.473 | 14.296 | 14.441 | 21.508 | 23.061 |

Table 17: Variance of $i-i_{-1}-1$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | Optimal | TR+q | TR | IFT+q | IFT | TRo | TR+q R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 0.66116 | 6.5116 | 6.5014 | 13.329 | 14.965 | 6.2309 | 6.3843 |
| 0.25 | 0.5 | 0.5 | 0.66062 | 6.4842 | 6.4768 | 13.338 | 14.99 | 6.2053 | 6.3552 |
| 0.25 | 0.75 | 0.5 | 0.65984 | 6.4461 | 6.4417 | 13.362 | 15.027 | 6.1713 | 6.3154 |
| 0.5 | 0.25 | 0.5 | 0.66241 | 6.5629 | 6.5513 | 13.31 | 14.927 | 6.2747 | 6.4355 |
| 0.5 | 0.5 | 0.5 | 0.66174 | 6.5356 | 6.5261 | 13.32 | 14.954 | 6.2489 | 6.4068 |
| 0.5 | 0.75 | 0.5 | 0.66067 | 6.4917 | 6.4856 | 13.346 | 14.999 | 6.2089 | 6.3611 |
| 0.75 | 0.25 | 0.5 | 0.66475 | 6.6541 | 6.6396 | 13.296 | 14.867 | 6.3558 | 6.5284 |
| 0.75 | 0.5 | 0.5 | 0.66404 | 6.6356 | 6.6222 | 13.303 | 14.891 | 6.3362 | 6.508 |
| 0.75 | 0.75 | 0.5 | 0.66265 | 6.5971 | 6.5854 | 13.324 | 14.939 | 6.2979 | 6.4668 |
| 0.25 | 0.25 | 0.9 | 0.66578 | 6.7864 | 6.7626 | 13.303 | 14.931 | 6.4592 | 6.6537 |
| 0.25 | 0.5 | 0.9 | 0.66424 | 6.703 | 6.6984 | 13.3 | 14.961 | 6.3812 | 6.5682 |
| 0.25 | 0.75 | 0.9 | 0.66205 | 6.5907 | 6.5879 | 13.324 | 15.008 | 6.2823 | 6.4549 |
| 0.5 | 0.25 | 0.9 | 0.67411 | 7.0906 | 7.0903 | 13.286 | 14.824 | 6.7385 | 6.9536 |
| 0.5 | 0.5 | 0.9 | 0.67134 | 6.9961 | 6.9919 | 13.279 | 14.862 | 6.6411 | 6.858 |
| 0.5 | 0.75 | 0.9 | 0.66697 | 6.8424 | 6.8364 | 13.301 | 14.931 | 6.4947 | 6.7027 |
| 0.75 | 0.25 | 0.9 | 0.70407 | 7.8317 | 7.8726 | 13.393 | 14.68 | 7.6457 | 7.7743 |
| 0.75 | 0.5 | 0.9 | 0.69879 | 7.8258 | 7.829 | 13.361 | 14.705 | 7.5694 | 7.7607 |
| 0.75 | 0.75 | 0.9 | 0.68857 | 7.7792 | 7.7822 | 13.334 | 14.783 | 7.3999 | 7.6341 |
| 0.25 | 0.25 | 1.1 | 0.66998 | 7.0974 | 7.0593 | 13.3 | 14.97 | 6.7079 | 6.949 |
| 0.25 | 0.5 | 1.1 | 0.66752 | 6.927 | 6.925 | 13.285 | 14.978 | 6.5562 | 6.7809 |
| 0.25 | 0.75 | 1.1 | 0.66405 | 6.7232 | 6.7204 | 13.305 | 15.009 | 6.3827 | 6.5808 |
| 0.5 | 0.25 | 1.1 | 0.69417 | 7.8791 | 7.9015 | 13.323 | 14.79 | 7.5961 | 7.8019 |
| 0.5 | 0.5 | 1.1 | 0.68788 | 7.6781 | 7.6002 | 13.287 | 14.812 | 7.2723 | 7.5267 |
| 0.5 | 0.75 | 1.1 | 0.67787 | 7.3008 | 7.3107 | 13.288 | 14.883 | 6.8979 | 7.1527 |
| 0.75 | 0.25 | 1.1 | 1.011 | 12.354 | 12.393 | 13.86 | 15.657 | 16.975 | 12.219 |
| 0.75 | 0.5 | 1.1 | 0.97144 | 11.457 | 11.499 | 13.699 | 15.147 | 13.601 | 11.403 |
| 0.75 | 0.75 | 1.1 | 0.89295 | 10.794 | 10.993 | 13.509 | 14.966 | 11.511 | 10.765 |
|  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |

Table 18: Variance of $i-i_{-1}-2$

| $p_{11}$ | $p_{22}$ | $\rho_{1}^{q}$ | TR R | TR+q RI | TR RI | TR+q I | TR I | IFT+q I | IFT I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.5 | 6.3708 | 6.3882 | 6.3715 | 6.5166 | 6.4999 | 13.329 | 14.965 |
| 0.25 | 0.5 | 0.5 | 6.3423 | 6.3583 | 6.3428 | 6.4889 | 6.4752 | 13.338 | 14.99 |
| 0.25 | 0.75 | 0.5 | 6.3039 | 6.3173 | 6.3033 | 6.4488 | 6.4415 | 13.362 | 15.027 |
| 0.5 | 0.25 | 0.5 | 6.4214 | 6.4404 | 6.4224 | 6.5691 | 6.5511 | 13.31 | 14.927 |
| 0.5 | 0.5 | 0.5 | 6.3929 | 6.411 | 6.3943 | 6.5409 | 6.5268 | 13.32 | 14.954 |
| 0.5 | 0.75 | 0.5 | 6.3484 | 6.3635 | 6.3485 | 6.4969 | 6.486 | 13.346 | 14.999 |
| 0.75 | 0.25 | 0.5 | 6.5117 | 6.5333 | 6.5136 | 6.662 | 6.6392 | 13.296 | 14.867 |
| 0.75 | 0.5 | 0.5 | 6.4917 | 6.5128 | 6.4935 | 6.6425 | 6.6236 | 13.303 | 14.891 |
| 0.75 | 0.75 | 0.5 | 6.4513 | 6.4695 | 6.4519 | 6.6026 | 6.5885 | 13.324 | 14.94 |
| 0.25 | 0.25 | 0.9 | 6.6485 | 6.6724 | 6.6534 | 6.8069 | 6.7836 | 13.305 | 14.931 |
| 0.25 | 0.5 | 0.9 | 6.5606 | 6.5817 | 6.5651 | 6.7191 | 6.7041 | 13.3 | 14.961 |
| 0.25 | 0.75 | 0.9 | 6.4455 | 6.4613 | 6.4473 | 6.6011 | 6.5921 | 13.324 | 15.007 |
| 0.5 | 0.25 | 0.9 | 6.9548 | 6.9917 | 6.9701 | 7.1331 | 7.1097 | 13.286 | 14.823 |
| 0.5 | 0.5 | 0.9 | 6.8525 | 6.8864 | 6.8659 | 7.0318 | 7.0144 | 13.279 | 14.861 |
| 0.5 | 0.75 | 0.9 | 6.6927 | 6.7166 | 6.6988 | 6.8635 | 6.8465 | 13.301 | 14.931 |
| 0.75 | 0.25 | 0.9 | 7.8031 | 7.9095 | 7.904 | 8.0589 | 8.0406 | 13.394 | 14.68 |
| 0.75 | 0.5 | 0.9 | 7.7723 | 7.8481 | 7.8358 | 8.0056 | 7.9791 | 13.367 | 14.705 |
| 0.75 | 0.75 | 0.9 | 7.6437 | 7.6831 | 7.6639 | 7.8396 | 7.8135 | 13.346 | 14.784 |
| 0.25 | 0.25 | 1.1 | 6.9529 | 6.9835 | 6.9653 | 7.1324 | 7.1137 | 13.305 | 14.968 |
| 0.25 | 0.5 | 1.1 | 6.7782 | 6.8042 | 6.7879 | 6.9536 | 6.9415 | 13.285 | 14.977 |
| 0.25 | 0.75 | 1.1 | 6.5728 | 6.5911 | 6.5775 | 6.738 | 6.7327 | 13.304 | 15.009 |
| 0.5 | 0.25 | 1.1 | 7.8279 | 7.9565 | 7.9388 | 8.1237 | 8.0924 | 13.323 | 14.787 |
| 0.5 | 0.5 | 1.1 | 7.5342 | 7.6103 | 7.5886 | 7.7771 | 7.7492 | 13.288 | 14.81 |
| 0.5 | 0.75 | 1.1 | 7.149 | 7.1889 | 7.1676 | 7.3515 | 7.3277 | 13.29 | 14.882 |
| 0.75 | 0.25 | 1.1 | 12.378 | 15.046 | 15.521 | 15.052 | 15.379 | 13.836 | 15.588 |
| 0.75 | 0.5 | 1.1 | 11.581 | 12.717 | 13.086 | 12.774 | 13.072 | 13.727 | 15.12 |
| 0.75 | 0.75 | 1.1 | 11.026 | 11.121 | 11.382 | 11.21 | 11.45 | 13.586 | 14.961 |
|  |  |  |  |  |  |  |  |  |  |


[^0]:    *We are grateful to Miguel Portela for his help with the computations. The authors acknowledge financial support from Fundação para a Ciência e a Tecnologia, research grant POCI/EGE/56054/2004.
    ${ }^{\dagger}$ NIPE and University of Minho.
    ${ }^{\ddagger}$ Corresponding author: Fernando Alexandre, Departamento de Economia, Escola de Economia e Gestão, Universidade do Minho, Campus de Gualtar, 4710-Braga, Portugal. Tel.: +351-253-604510; fax: +351-253-676375; e-mail: falex@eeg.uminho.pt.
    ${ }^{\S}$ GEMF and Faculty of Economics of the University of Coimbra.
    ${ }^{〔}$ Birkbeck College, University of London.

[^1]:    ${ }^{1}$ As described in Svensson (2000), $\pi_{t}^{f}$ fulfils is given by $\pi_{t}^{f}=p_{t}^{f}-p_{t-1}^{f}=\pi_{t}^{*}+s_{t}-s_{t-1}=$ $\pi_{t}+q_{t}-q_{t-1}$, where $p_{t}^{f}=p_{t}^{*}+s_{t}$ is the domestic-currency price of imported foreign goods and $\pi_{t}^{*}$ is foreign inflation.

