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1 Introduction

In most developed economies, income tax rates and government debt levels are positive and

sizable. In the US, effective income tax rates have been in the order of 20%, and outstanding

public debt represents about 60% of GDP. The main question we pose in this paper is: can

these numbers be accounted for as the outcome of a government’s welfare maximization program

in a neoclassical economy? To address this question we adopt the standard framework in the

literature of optimal fiscal policy, and drop the assumption of government’s full commitment to

future policies. Instead, we assume that the government has no access to commitment devices nor

to reputation mechanisms, and, therefore, we restrict our attention to Markovian optimal policies.

Our answer to the above question is in the affirmative, provided this is the policy expected by

households and all successive governments.

The observation of positive income taxes and, especially, of positive levels of public debt has

been at odds with most neoclassical theories of optimal fiscal policy. Indeed, the now classical

result by Chamley (1986) and Judd (1985) establishes that a committed government will not use

distortionary taxation in the long run. The optimal policy set by such a government involves

high taxation in the short run in order to build up enough assets to finance future government

expenditure, so that distortionary taxation can be disposed of in the long run. In economies with

government’s full commitment, this result has been proved to be robust to a number of non-trivial

departures from the standard framework.

In this paper, we study a neoclassical economy populated by infinitely-lived consumers, com-

petitive firms operating a constant-returns-to-scale production technology, and a benevolent gov-

ernment. The government makes sequential decisions on the provision of a valued public good,

on income taxation and the issue of public debt. We characterize and compute Markov-perfect

optimal fiscal policy in this economy with two payoff-relevant state variables: physical capital

and public debt. Other than imposing differentiable strategies, we do not restrict further the

definition of Markov perfection. Hence, we look at all Markov-perfect equilibria of the infinite-

horizon economy, including those which are the limit of equilibria of the finite-horizon economy

and those which only emerge with infinite horizons.

The main contribution of our analysis can be summarized as follows. In the class of economies

outlined above, optimal fiscal policy in a Markov-perfect equilibrium is not uniquely determined.

We find two stable, steady-state equilibria: in one of them income taxes and debt are positive, im-

plying positive distortions to both the consumption/savings and the private/public consumption

margins. In the second equilibrium taxes are zero and debt is negative, implying no distortions to

these two margins. Moreover, in a calibrated version of the model that matches key US observa-

tions, we show that a 20% income tax rate and a debt-GDP ratio of 60% emerge as the long-run
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optimal fiscal policy in the equilibrium with positive distortions. We prove that convergence to

either of the two long-run equilibria is not pinned down by initial conditions but by expectations

on government policy. That is, Markov-perfect optimal fiscal policy is driven by expectations.

In the economy of our model, the multiplicity of expectation-driven Markov-perfect equilibria

does not arise if the government is required to balance its budget on a period-by-period basis,

in which case income taxation becomes the only source of government revenue. It is only when

governments are allowed to run unbalanced budgets and, therefore, to spread the burden of

financing the provision of the public good that expectations play a role in the determination of

optimal fiscal policy. Thus, expectations that all future governments will dispose of distortionary

taxation if given enough assets to finance the provision of the public good, will render such a

policy optimal. On the other hand, expectations that all governments will issue debt in order to

pass on part of the burden of financing current expenditure to the next government will lead to

an optimal policy with income taxation, issues of debt and, consequently, positive wedges. As we

show below, the existence of this latter equilibrium hinges on the assumption that the economy

runs for an infinite number of periods, and therefore there is no last government unable to pass

on the burden.1 A feature common to the two equilibria is that governments use public debt to

reduce long-run tax distortions, as compared to the economy without debt.

In economies without capital, the existence of two steady-state Markov-perfect equilibria has

been recently shown by a number of authors. In these economies, however, equilibrium dynamics

are drastically different from what we find in our economy with capital and debt. Martin (2006)

and Dı́az-Giménez, Giovannetti, Marimon and Teles (2006), study optimal monetary policy in

economies with debt and find two steady-state debt levels, only one of which is stable. These

authors show that the two steady states are generated by the same policy function and, therefore,

the Markov-perfect equilibrium is unique. Krusell, Martin and Rı́os-Rull (2006) study optimal

debt policy in a model with exogenous government expenditure, labor taxation and no capital.

In their economy, the interior steady-state equilibrium with positive distortions is unstable. The

authors show that the equilibrium contains a large, countable set of long-run debt levels. Initial

conditions pin down the element in this set to which the economy converges in a maximum of

two periods.

Our paper builds on a large body of literature dealing with optimal fiscal policy in environ-

ments with no commitment. Thus, Markov-perfect optimal taxation in economies without public

debt has been first studied by Klein and Rı́os-Rull (2003), Klein, Krusell and Rı́os-Rull (2006)
1The expectational multiplicity of the equilibrium in our economy is thus of a different nature to that found

by Calvo (1988) in a two-period economy with public debt and costly debt repudiation. This author shows the

existence of two expectation-driven equilibria: a “good” Pareto-efficient equilibrium in which there is no debt

repudiation, and a “bad” Pareto-inefficient equilibrium where debt is partially repudiated.
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and then by Ortigueira (2006). Indeed, our paper is an extension of the framework presented in

Klein, Krusell and Rı́os-Rull (2006) to include public debt.

Our paper is also related to the work of Song, Storesletten and Zilibotti (2007) who study

optimal fiscal policy in economies where subsequent generations of agents (young and old) vote on

policy. These authors focus on the Markov-perfect political equilibrium in an economy without

physical capital and find that the long-run level of debt depends crucially on the distortions

brought about by labor taxation. When these distortions are large enough debt converges to an

interior value, otherwise debt accumulation depletes the economy. Debortoli and Nunes (2007)

assume political disagreement (i.e. policymakers have different preferences on the type of public

good that should be provided) as in Alesina and Tabellini (1990) and Persson and Svensson (1989)

and study the evolution of public debt under different degrees of commitment. Abstracting from

physical capital, the authors show that it is political disagreement what explains positive values

of long-run debt.

A different body of literature has developed after the paper by Lucas and Stokey (1983),

who study the role of public debt as a substitute for commitment in Ramsey economies without

capital. They show that the Ramsey policy is consistent if governments can commit to inherited

debt contracts. Specifically, they show that future governments will comply with the fiscal plans

chosen today if the current government delegates rich enough state-contingent multiple-period

debt contracts. Later, Persson, Persson and Svenson (1988) extend this line of research to mo-

netary policy inconsistency. Finally, Aiyagari, Marcet, Sargent and Seppälä (2002) modify the

Stokey and Lucas (1993) model by dropping the complete markets assumption, which introduces

a history dependence on the debt path, as opposed to a contingency to future states. They show

that when there are no exogenous bounds on debt the Ramsey planner in their economy lets

public debt converge to a negative level.

The paper is organized as follows. Section 2 presents the model, characterizes Markov-perfect

equilibria and shows the existence of the two steady states. In Section 3 we parameterize and

calibrate our model economy and compute Markov-perfect equilibrium. We also compare Marko-

vian policies with those arising in the efficient and the Ramsey equilibrium. Section 4 presents a

description of our numerical algorithm. Section 5 concludes and Section 6 contains the Appendix.

2 The Model

Our framework is the standard, non-stochastic neoclassical model of capital accumulation,

extended to include a benevolent government that provides a valued public good. In order to

finance the provision of such public good the government can levy a tax on household’s income
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and issue public debt. Thus, fiscal policy in each period consists of the amount of the public good

provided, Gt, the tax rate on income, τt, and the issue of public debt, Bt+1, which matures in

period t + 1.

We begin by describing the problem solved by each agent in this economy. We then charac-

terize the fiscal policy set by the benevolent government lacking the ability to commit to future

policies. In order to help compare our results with the case of full commitment, we also present

a brief review of fiscal policy in the Ramsey equilibrium.

2.1 Households

There is a continuum of homogeneous households with measure one. Each household supplies

one unit of labor and chooses consumption and savings in order to maximize lifetime utility,

subject to a budget constraint and initial endowments of physical capital and public debt,

max
{ct,kt+1,bt+1}

∞∑

t=0

βtU(ct, Gt), (2.1)

s.t.

ct + kt+1 + bt+1 = kt + bt + (1− τt) [wt + (rt − δ) kt + qtbt] ∀t (2.2)

k0 > 0 and b0 given,

where small letters are used to denote individual variables and capital letters to denote economy-

wide values. Function U(·) in equation (2.1) is the instantaneous utility function, which depends

on the consumption of a private good, ct, and the consumption of a public good, Gt. U(·) is

assumed to be continuously differentiable, increasing and concave; and 0 < β < 1 is the discount

factor. Labor is supplied inelastically at a real wage rate wt. Household’s asset holdings are made

up of physical capital, kt, which is rented to firms at the rate rt, and government’s bonds, bt,

which bear an interest denoted by qt. Physical capital depreciates at a rate denoted by 0 < δ < 1.

Household’s total income, net of capital depreciation, is taxed at the rate τt. If the government

is a net lender to the private sector —i.e., the household borrows from the government, bt < 0—

taxable income is net of interest payments.

2.2 Firms

Firms are competitive and produce an aggregate good with a neoclassical production tech-

nology. Total production is given by,

Yt = F (Kt, Lt) = F (Kt, 1) = f(Kt) ∀t, (2.3)
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where Kt denotes the aggregate or economy-wide stock of capital. First-order conditions to profits

maximization imply the typical demand and zero-profits equations,

rt = fK(Kt) (2.4)

wt = f(Kt)− rtKt. (2.5)

2.3 Government

Government’s fiscal policy involves the setting of both the provision of the public good and

its financing through taxes and debt. The government is benevolent in the sense that it seeks

to maximize households’ lifetime utility, (2.1), subject to its budget constraint, to a feasibility

restriction, and to private sector’s first-order conditions. In addition, government’s policies may

be conditioned by its lack of commitment. The budget constraint of the government is,

Gt + (1 + qt)Bt = Bt+1 + τt [wt + (rt − δ)Kt + qtBt] , (2.6)

where the right-hand side of equation (2.6) represents government’s revenues, which are made up

of the issue of debt, Bt+1, plus revenues from income taxation. The left-hand side is government’s

total expenditure, including the provision of the public good, the repaying of outstanding public

debt and financial expenses.

2.4 Ramsey Optimal Fiscal Policy

This Section presents a brief review of the Ramsey fiscal policy in our model economy. In a

Ramsey equilibrium, the benevolent government is assumed to have full commitment to future

policies, and, thus, it can credibly announce the whole sequence of public expenditure, income

taxes and issues of debt from the first period onwards. This allows the government to anticipate

the response of the private sector to its fiscal policy. Hence, the problem of the government in

the Ramsey equilibrium is to choose sequences for taxes and public debt so that the competitive

equilibrium maximizes social welfare [equation (2.1)].

Proposition 1 below presents the optimal fiscal policy in the steady-state Ramsey equilibrium

for our economy. Since the result in Proposition 1 is well known in the literature of optimal fiscal

policy we only provide a sketch of the proof (see the Appendix).

Proposition 1: In the steady-state Ramsey equilibrium the tax rate on income is zero and the

government holds positive assets, i.e. B < 0.
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2.5 Markov-Perfect Optimal Fiscal Policy

In this Section we drop the assumption of government’s full commitment to future policies and

study time-consistent optimal policies. More specifically, we will focus on differentiable Markov-

perfect equilibria of this economy populated by a continuum of households and a government that

acts sequentially, foreseeing its future behavior when choosing current levels of the public good,

income taxes and the issue of debt. The restriction to differentiable Markov-perfect policies is

justified by our use of calculus in the characterization of the equilibria. A further remark on the

assumption of differentiability will follow below.

Following the literature on Markovian policies, we assume that the government —although

unable to commit to future policies—, does commit to honoring the tax rate it announces for the

current period, and to repaying outstanding debt obligations. The commitment to current taxes

implies an intra-period timing of actions that grants the government leadership in the setting of

the tax rate. That is, at the beginning of period t, the time-t government sets the tax rate for

the period; next, once that choice is publicly known, consumers choose consumption/savings and

the composition of their portfolios, and the government chooses the provision of the public good

(or equivalently, the issue of debt). Governments are thus (intra-period) Stackelberg players and

can therefore anticipate the effects of current taxation on household’s decisions.

In sum, we assume that the time-t government has intra-period commitment to time-t taxes

but not to debt issues. In our opinion, this fits well the timing of actions in real economies, where,

typically, governments make decisions on taxes at discrete times but issue debt continuously. [For

a discussion on the effects of the timing of actions on Markovian policies see Ortigueira (2006).]

The optimization problem of a typical household

The household chooses (i) how much to consume and save; and (ii) how to allocate savings

between physical capital and public debt. At the time the household makes these decisions the

tax rate for the period is known, but it must foresee both the current government’s debt policy

and future governments’ fiscal policy.

Hence, the problem of a household that holds k and b of the physical and government assets,

respectively, that has to pay taxes on current income at rate τ , that expects the current and

future governments to issue new debt according to the policy ψB : (K×B×τ) → B′, and expects

future governments to set taxes according to the policy ψτ : (K ×B) → τ , can be written as,

v(k, b, K, B; τ) = max
c,k′,b′

{
U (c,G) + βṽ(k′, b′,K ′, B′)

}
(2.7)

s.t.

c + k′ + b′ = k + b + (1− τ) [w(K) + [r(K)− δ] k + q(K)b] ,
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where ṽ(k′, b′,K ′, B′) is the continuation value as foreseen by the household. ω(K), r(K) and q(K)

are pricing functions. The economy-wide stock of physical capital is expected to evolve according

to the law K ′ = H(K, B, τ), say. By using the assumption of a representative agent, i.e., k = K

and b = B, and the government’s budget constraint, it follows from the above maximization

problem that the consumption function in a competitive equilibrium —where today’s tax rate

is τ , future taxes are set according to policy ψτ and current and futures issues of debt are set

according to policy ψB— can be expressed in terms of K,B and τ , say C(K,B, τ), and must

satisfy the following Euler equation,

Uc (C(K, B, τ) , G) = βUc

(
C(K ′, B′, τ ′

)
, G′)

[
1 +

(
1− τ ′

)
(fK(K ′)− δ)

]
, (2.8)

where B′ = ψB(K,B, τ) and τ ′ = ψτ (K ′, B′). In equilibrium K ′ is given by,

K ′ = K + B + (1− τ) [f(K)− δK + q(K)B]− C (K, B, τ)−B′, (2.9)

where G and G′ are given by the time-t and time-(t + 1) governments’ budget constraints, res-

pectively. Finally, pricing functions ω(K) and r(K) are given by (2.4) and (2.5), and q(K) must

satisfy the non-arbitrage condition between the two assets,

q(K) = fK(K)− δ. (2.10)

In equilibrium, capital and debt yield the same return, meaning that q is independent of B.

The fact that the interest rate on public debt is independent of B implies an important departure

from economies without physical capital. We will comment further on this issue below.

Equation (2.8) has the usual interpretation: the marginal utility of consumption equals the

present value of the last unit of income devoted to savings. Since physical capital and debt yield

the same return in equilibrium, the supply of public debt determines the composition of the

household’s portfolio. This implies a one-to-one crowding out of investment in capital by public

debt. Taxation, on the other hand, affects disposable income and the level of consumption, and

thus translates into a non-one-to-one crowding out of capital investment. The problem of the

government is shown next.

The problem of the government

As explained above, the government’s lack of commitment to future policies and our focus

on Markov-perfect equilibria allows us to think of the government as a sequence of governments,

one for each time period. Thus the time-t government sets the tax rate for the period and issues

new debt foreseeing the fiscal policy to be set by successive governments. Following the timing

of actions established above, the time-t government is an intra-period Stackelberg player in our
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economy: At the beginning of the period, it chooses the income tax rate for that period taking

into account the effect of τ on the level of consumption, as given by the consumption function,

C(K, B, τ), that solves (2.8) and (2.9). In a second stage, the government sets the issue of debt.

The problem of the government is thus solved backwards. Given the initial choice for taxes, the

issue of debt is the solution to,

V (K, B, τ) = max
B′

{
U(C(K, B, τ), G) + βṼ (K ′, B′)

}
(2.11)

s.t.

K ′ = (1− δ)K + f(K)− C(K,B, τ)−G

G = τ [f(K)− δK + q(K)B] + B′ − [1 + q(K)]B,

and equation (2.10),

where V (K,B, τ) is the value to the time-t government that has set the tax rate at τ and foresees

the fiscal policy to be set by future governments. Ṽ (K ′, B′) is next-period value as foreseen by the

time-t government. The issue of debt that solves this problem can thus be written as B′(K,B, τ).

Therefore, the tax rate set by the time-t government is the solution to,

W (K, B) = max
τ

{
U(C(K,B, τ), G) + βṼ (K ′, B′ (K, B, τ))

}
(2.12)

s.t.

K ′ = (1− δ)K + f(K)− C(K, B, τ)−G

G = τ [f(K)− δK + q(K)B] + B′ (K, B, τ)− [1 + q(K)]B,

and equation (2.10).

The following proposition characterizes the fiscal policy set by the time-t government.

Proposition 2: The tax and debt policy that solves the government’s problem is the solution to

the following Generalized Euler Equations:

UcCτ + UGGτ

Gτ + Cτ
= β

[
U ′

c′C
′
K′ + U ′

G′G
′
K′ +

U ′
c′C

′
τ ′ + U ′

GG′
τ ′

G′
τ ′ + C ′

τ ′

(
f ′K′ + 1− δ − C ′

K′ −G′
K′

)]
(2.13)

and

UcCτ + UGGτ

Gτ + Cτ
= UGGB′ + β

[
U ′

c′C
′
B′ + U ′

G′G
′
B′ −

U ′
c′C

′
τ ′ + U ′

GG′
τ ′

G′
τ ′ + C ′

τ ′

(
C ′

B′ + G′
B′

)]
. (2.14)

Proof: See the Appendix.
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Some comments on notation are in order. Function arguments in equations (2.13) and (2.14)

have been omitted for expositional clarity. Subscripts denote the variable with respect to which

the derivative is taken. A prime in a variable indicates next-period values, and a prime in

a function indicates it is evaluated at next-period variables. Finally, Gτ and GB denote the

derivatives of G with respect to τ and B, respectively, holding B′ constant.

Before providing an interpretation of the two Generalized Euler Equations presented in Propo-

sition 2, we offer the following definition. A Markov-perfect equilibrium in our economy can be

loosely defined as:

Definition: A Markov-perfect equilibrium is a quadruplet of functions C(K,B, τ), ψB(K, B, τ),

ψτ (K,B) and W (K, B), such that:

(i) Given ψB and ψτ , C(K, B, τ) solves the household’s maximization problem.

(ii) Given C(K, B, τ), ψB and ψτ solve the government’s maximization problem. That is,

B′ = ψB(K,B, τ) and τ = ψτ (K,B).

(iii) W (K,B) is the value function of the government.

The two Generalized Euler Equations, (2.13) and (2.14), which characterize Markov-perfect

taxation and debt policies, respectively, have the following interpretation. Equation (2.13) es-

tablishes that the tax rate has to equate the marginal value of taxation to the marginal value

of investing in physical capital. Equation (2.14) establishes that the issue of debt has to equate

the marginal value of issuing debt to the marginal value of investing in physical capital (and

consequently to the marginal value of taxation). In a Markov-perfect equilibrium, the govern-

ment is indifferent between using taxes or debt to finance the provision of the public good. Both

equations involve only wedges between today and tomorrow, as posterior wedges are implicitly

handled optimally by an envelope argument. Consecutive governments, however, disagree on how

much to tax tomorrow [the time-(t + 1) government does not internalize the distortionary effects

of its policy on time-t investment]. The current government thus takes into account the effect

of its policy on tomorrow’s initial conditions, K ′ and B′, in order to help compensate for that

disagreement. Following this reasoning, one may interpret the different terms in (2.13) and (2.14)

as follows.

The left-hand side of equation (2.13) is today’s marginal utility of taxation per unit of savings

crowded out. The numerator of this expression is the change in utility from a marginal increase

in the tax rate, which is made up of the change in utility from the private good, UcCτ , plus the

change in utility from the public good, UGGτ . The denominator is the amount of savings crowded

out, or, equivalently, the change in consumption of the public and private good brought about

by the increase in the tax rate.
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The right-hand side of equation (2.13) is the marginal utility of investing in physical capital.

An extra unit of investment today yields an increase in resources tomorrow by f ′K′ + 1 − δ.

The breakdown of the value of these resources is: (i) C ′
K′ of them are consumed as private good,

yielding a value of U ′
c′C

′
K′ ; (ii) G′

K′ corresponds to the increase in the provision of the public good

obtained from the increase in the tax base, which yields a value of U ′
G′G

′
K′ ; (iii) the remaining

f ′K′ + 1− δ−C ′
K′ −G′

K′ are taxed away, and the marginal value is the left-hand side of equation

(2.13), updated one period ahead. Hence, the right-hand side of (2.13) results from adding up all

these values and discounting.

Equation (2.14) is a non-arbitrage condition between taxation and public debt, and its in-

terpretation is equally straightforward. The right-hand side is the value of issuing an extra unit

of government debt today. The first term on the right-hand side is the value of today’s extra

public good financed with the increase in government debt. The second term is the present value

of the implied changes in tomorrow’s consumption of the private and public good, C ′
B′ and G′

B′ ,

respectively. Besides the direct effects on tomorrow’s utility, these changes have an effect on to-

morrow’s taxation, which must be valued using the marginal utility of taxation. Equation (2.14)

establishes that the value of issuing debt must equal the value of taxation (the left-hand side of

the equation).

A re-arrangement of equation (2.14) offers an alternative interpretation of the non-arbitrage

condition between taxes and bonds in terms of two wedges, Uc − UG and U ′
c′ − U ′

G′ . Such a

re-arrangement yields,

(Uc − UG)
Cτ

Gτ + Cτ
+ β

{(
U ′

c′ − U ′
G′

)(
G′

B′ +
G′

τ ′

G′
τ ′ + C ′

τ ′
K ′′

B′

)}
= 0. (2.15)

Equation (2.15) says that the value of using debt instead of taxes to finance the last unit of

public expenditure equals zero in a Markov-perfect equilibrium. The first term is the net change

in utility today of using debt instead of taxes per unit of forgone savings. The second term

captures the change in future distortions induced by the extra unit of public debt. The way the

current government trades off these two wedges when choosing B′ depends on expectations on

future government policy. As will become clearer below, there is an equilibrium policy which

renders a non-zero wedge Uc − UG in the long run.

2.5.1 Steady-State Markov-Perfect Equilibrium

A steady-state Markov-perfect equilibrium is defined as a list of infinite sequences for quantities

{Ct}, {Kt}, fiscal variables, {Gt}, {τt}, {Bt} and prices {ωt}, {rt}, and {qt} such that they

are generated by a Markov-perfect equilibrium, and its values do not change over time, i.e.

Kt+1 = Kt, Bt+1 = Bt, τt+1 = τt for all t, and the same is true for consumption and prices.
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In this subsection we offer some insights on the steady-state Markov-perfect equilibrium of

our model economy, and prove three propositions. A first insight is related to the existence of two

different steady-steady Markov-perfect equilibria. Evaluating equation (2.15) at a steady-state

Markov-perfect equilibrium yields,

(Uc − UG)
{

Cτ

Gτ + Cτ
+ β

(
GB +

Gτ

Gτ + Cτ
K ′

B

)}
= 0. (2.16)

This equation suggests that there may be two different taxation and debt policies consistent

with the existence of a steady-state Markov-perfect equilibrium. The first one corresponds to the

policy prescribed by the long-run Ramsey equilibrium. As shown in Proposition 1, the Ramsey

equilibrium prescribes zero income taxes and positive government asset holdings in the steady

state. The provision of the public good is financed entirely from the returns on government’s

assets, and therefore, Uc = UG. The next proposition proves that this policy is a Markov-perfect

equilibrium.

Proposition 3: The steady-state Ramsey equilibrium is a Markov-perfect equilibrium.

Proof: See Appendix.

In a related paper, Azzimonti-Renzo, Sarte and Soares (2006) study a model with differenti-

ated taxes on capital and labor, and exogenous government expenditure. Within their framework,

the authors find a Markov-perfect equilibrium which yields zero labor taxes from all initial condi-

tions, K and B, and zero capital taxes from next-period onwards. As confirmed by our numerical

computations, this result also holds in our model economy: when there are no exogenous bounds

on income taxation, there exists a Markov-perfect equilibrium in which income taxes are zero

after one period, and government assets converge to the long-run Ramsey value. Furthermore,

for some initial conditions the initial income tax is negative, which amounts to a subsidy to

households.

The second taxation and debt policy consistent with a steady-state Markov-perfect equilibrium

involves positive income taxes and the issuing of government’s bonds. Under this policy Uc 6= UG,

and the second term on the left-hand side of equation (2.16) is zero. The next proposition presents

an important feature of the steady-state Markov-perfect equilibrium with positive taxation.

Proposition 4: Along a steady-state Markov-perfect equilibrium with positive distortions, gov-

ernment bonds are not net wealth, i.e., CB(K∗, B∗, τ∗) = 0.

Proof: See the Appendix.

Even though we do not have a formal proof establishing that the maximum number of stable,

interior steady-state equilibria is two, our numerical computations lead us to be confident that this

is the case. Our exploration of different subsets of the state space produced only a steady-state
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equilibrium with positive taxation and public debt.

The existence of two stable, steady-state equilibria raises a question concerning equilibrium

dynamics from initial values K0 and B0. Proposition 5 below proves that the government’s policy

rules generating the two steady states are different, which implies that steady-state multiplicity is

expectational. Therefore, given initial conditions K0 and B0, expectations on government policy

determine equilibrium dynamics and convergence to one of the two long-run equilibria. The basic

idea of the proof relies on the fact that the steady-state equilibrium with positive distortions is

not the limit of the finite-horizon economy’s Markov-perfect equilibrium as the time horizon goes

to infinity. Actually, we show that the steady-state equilibrium with no distortions is the only

limit of the finite-horizon equilibrium.

Proposition 5: The two steady-state Markov-perfect equilibria are not associated with the same

pair of decision rules ψτ and ψB. Hence, given K0 and B0, the Markov-perfect equilibrium is

(globally) indeterminate.

Proof: See the Appendix.

The next section presents a numerical analysis of the global dynamic properties of the steady-

state Markov-perfect equilibrium with positive distortions.

3 The Markov-Perfect Equilibrium in a Calibrated Economy

In this section we parameterize our model economy, set values to its parameters and compute

Markov-perfect equilibria. A special attention will be devoted to the presentation of the Markov-

perfect equilibrium rendering distortinary taxation and positive debt in the long run. We also

compare Markov-perfect equilibria to the efficient solution (lump-sum taxation). Finally, we

solve for the Markov-perfect equilibrium under balanced budgets and compare the results to the

Ramsey and efficient solutions. A detailed explanation of our computational approach can be

found in the next section.

The instantaneous utility function is assumed to be of the CES form in the composite good

ctG
θ
t , that is,

U(c,G) =
(c Gθ)1−σ − 1

1− σ
, (3.1)

where 0 < θ < 1, and 1/σ denotes the elasticity of intertemporal substitution of the composite

good. The functional form for the production technology is the standard Cobb-Douglas function,

with α denoting the capital’s share of income, i.e.,

f(K) = AKα, A > 0. (3.2)

13



Parameter values are set as follows. The constant in the production function, A, and the

inverse of the elasticity of intertemporal substitution, σ, are both set equal to one. The value of

α is set at 0.36, which is the capital’s share of income in the US economy; the depreciation rate

of capital is set at 0.09, which is a standard value in macroeconomic models; β is set a 0.96, and

θ is 0.2 so that the public-to-private consumption ratio falls within the range 15 − 30% for all

equilibrium concepts mentioned above. These parameter values are in line with those in Klein,

Ŕıos-Rull and Krusell (2006), Ortigueira (2006) and many others.

We start by presenting steady-state values for macroeconomic aggregates and fiscal policy

under three equilibrium concepts —namely, the equilibrium with lump-sum taxes, the Ramsey

equilibrium and the Markov-perfect equilibrium. Table 1 below presents these steady-state values.

Table 1

Steady-State Equilibria

Markov-perfect

Efficient No wedges (Ramsey) Positive wedges

Y 1.7608 1.7608 1.6934

K 4.8144 4.8144 4.3201

C 1.1063 1.1063 1.1017

G 0.2213 0.2213 0.2032

G/C 0.2 0.2 0.1844

τ indet. 0 0.1905

B/Y indet. -3.015 0.5639

W -5.0157 -5.0157 -5.5525

Notes: Steady-state values and policy for the efficient, Ramsey and Markov-perfect equilibria.

The first column in Table 1 shows the efficient equilibrium when lump-sum taxation is avail-

able. The second and third columns show the two long-run Markov-perfect equilibria. The one

in the second column is the equilibrium with zero wedges, which corresponds to the Ramsey

equilibrium. In this equilibrium, the government does not distort long-run investment and sets

income taxes equal to zero. Public expenditure is financed entirely from the income generated

by the assets owned by the government. That is, negative public debt (positive asset holdings) is

the only source of income for the government in this steady-state equilibrium. In the calibrated

economy the value of the assets held by the government is larger than the assets held by the

private sector, and more than three times the value of output.

The steady-state Markov-perfect equilibrium with positive wedges is shown in the third co-

lumn of Table 1. In this equilibrium income is taxed at a rate of 19.05% and the debt-GDP ratio
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is 56.39%. These numbers fall well within the range of observed values in the U.S. and in most

developed economies.

In our economy with physical capital accumulation and public debt, the configuration of

Markovian equilibria differs drastically from that of the economy without capital, studied by

Krusell, Martin and Rı́os-Rull (2006). Contrary to their results, our steady-state equilibrium

with positive distortions is stable. I.e. there is a Markov-perfect equilibrium whose time paths

converge to this steady state, both for economies starting with debt levels below and above

the steady-state value. An explanation as to why the presence of physical capital makes such

an important impact in terms of equilibrium dynamics must be found in the determination of

the equilibrium interest rate on public debt. In our economy with capital, the interest rate is

independent of the level of outstanding debt and is pinned down by the stock of capital. Thus, the

current government can only affect next period’s interest rate through the stock of capital. This

is in contrast with the economy without capital where the government nails down next period’s

interest rate when setting today’s debt issuance.

Figures 1 to 7 below display equilibrium dynamics converging to the Markov-perfect equilib-

rium with long-run distortions.2 (Details on our method to compute Markov-perfect equilibria

can be seen below and in the next section.) Figures 1 to 3 show government’s optimal fiscal

policy along the Markov-perfect equilibrium converging to the steady state in the last column

of Table 1. The optimal income tax, as a function of K and B, is shown in Figure 1. The tax

rate increases both with capital and debt. Figure 2 shows government’s debt policy. The issue of

debt decreases sharply with capital, indicating that capital-rich economies rely relatively less on

public debt to finance government. Figure 3 shows public expenditure as a function of K and B.

The private-good consumption function is displayed in Figure 4.

The stability of the steady-state is shown in Figures 5 to 7. Net investment in physical capital,

K ′−K, is presented in Figure 5. In Figure 6 we plot the change in the level of outstanding debt,

B′ − B. Finally, Figure 7 presents the two loci, K ′ = K and B′ = B. The point in which these

two loci intersect corresponds to the steady-state values for K and B. The arrows indicate the

direction of the trajectories starting in the different regions of the state space.

It should be noted that the Markov-perfect equilibrium shown in Figures 1 to 7 has been com-

puted using a global method. It becomes evident from a simple inspection of the Euler equation

and the two Generalized Euler equations that the standard method of linearizing around steady-

state values cannot be applied in our setting. Indeed, the equilibrium must be computed without

prior knowledge of steady-state values. Thus, the subset of the state space must be changed in
2Equilibrium dynamics converging to the steady state without distortions are not presented here as they are

well known from the literature on Ramsey optimal policy. (See the paragraph following Proposition 3.)

15



a trial-and-error process until it contains the steady-state equilibrium. Before moving on to the

next section where we explain our computation strategy, we draw attention to Figures 8 to 11

below. Figures 8, 9 and 10 plot relative residuals in the Euler equation and the two Generalized

Euler equations, respectively. Figure 11 shows relative residuals in the Bellman equation. It

should be noted that the errors are very small, less than 0.001 of 1 per cent. In addition to this,

the errors nearly satisfy the equioscillation property (the sign of the errors alternates between

positive and negative), and show almost equal amplitude throughout the considered subset of

the state space. All these properties of the errors indicate that our approximations are close to

being optimal, in the sense that there are no better polynomials to approximate the unknown

functions.

3.1 The Role of Debt in the Markov-Perfect Equilibrium

We now assess the role of public debt in economies without commitment. We present steady-

state values for the three equilibrium definitions when governments are restricted to run balanced

budgets. Table 2 below shows these values.

Table 2

Steady-State Equilibria with balanced budgets

Efficient Ramsey Markov-perfect

Y 1.7608 1.7011 1.6710

K 4.8144 4.3742 4.1632

C 1.1063 1.0895 0.9911

G 0.2213 0.2179 0.3052

G/C 0.2 0.2 0.3079

τ T = G 0.1666 0.2354

W -5.0157 -5.4756 -6.1565

Notes: Steady-state values and policy for the efficient, Ramsey and Markov-perfect equilibria in

the economy with balanced budgets.

As discussed above, the multiplicity of Markov-perfect equilibria does not hold in the economy

with balanced budgets. The unique long-run Markov-perfect equilibrium in the economy without

debt is shown in the third column of Table 2. This Markov-perfect equilibrium yields higher

income taxes, underconsumption of the private good and overconsumption of the public good.

Actually, the G/C ratio in the Markovian economy is 50% larger than in the efficient equilibrium,

and the capital stock is 15% lower. The proneness of Markovian governments to overspend

and overtax in the economy without debt is especially acute due to: (i) their lack of ability
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to internalize the distortionary effects of current taxation on past investment, and (ii) their

leadership to set taxes before households choose consumption, which allows them to anticipate

the response of current consumption to taxes, and then diminishing the perceived crowding out

of physical investment.

Public debt plays a key role curbing the tendency of Markovian governments to overtax in

the long run. In the steady-state Markov-perfect equilibrium with distortionary taxation the

G/C ratio is 0.1844 (see Table 1), which amounts to a 40% decrease with respect to the economy

without debt. Likewise, private consumption and capital are brought up closer to the efficient

allocation. The ability of Markovian governments to issue debt is thus bound to have sizable

positive effects on welfare.

4 Numerical Approach

In this section we outline our strategy for the computation of the Markov-perfect equilibrium.

The first challenge in the computation of the three unknown functions C(K, B, τ), ψτ (K, B), and

ψB(K,B, τ) stems from the presence of the derivatives of the consumption function in the two

generalized Euler equations, (2.13) and (2.14). In a steady state, these derivatives must be solved

for, thus making the number of unknowns exceed the number of equations.

Our computational method is an application of a projection method which approximates

the three unknown functions with a combination of Chebyshev polynomials. Within the class of

orthogonal polynomials, Chebyshev polynomials stand ut for its efficiency to approximate smooth

functions.3 The unknown coefficients in the approximate functions are then obtained so that they

satisfy the three Euler equations at some collocation points within a subset of the state space,

[Kmin,Kmax]× [Bmin, Bmax].

Thus, we approximate functions for consumption, taxes and the issue of debt by:

Ĉ(K, B, τ ;~a) =
nc

k∑

i=0

nc
b∑

j=0

nc
τ∑

`=0

aij` φij`(K,B, τ) (4.1)

ψ̂τ (K,B, ~d) =
nb

k∑

i=0

nb
b∑

j=0

dij φij(K, B) (4.2)

ψ̂B(K, B,~h) =
nτ

k∑

i=0

nτ
b∑

j=0

hijφij(K, B), (4.3)

3For a complete characterization of their properties and a rigorous exposition of projection techniques see Judd

(1992, 1998). For a previous application of these ideas to the computation of Markovian optimal taxes see Ortigueira

(2006).
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where φij`(K, B, τ) and φij(K,B) are tensor products of univariate Chebyshev polynomials, which

form the multidimensional basis for approximation. For instance, φij(K, B) = φi(K)φj(B), with

φi(K) denoting the Chebyshev polynomial of order i in K and φj(B) the Chebyshev polynomial

of order j in B. Since Chebyshev polynomials are only defined in the interval [−1, 1], K and B

must be re-scaled accordingly, using the chosen Kmin,Kmax, Bmin, Bmax. That is,

φij(K,B) = φi

(
2(K −Kmin)
Kmax −Kmin

− 1
)
× φj

(
2(B −Bmin)
Bmax −Bmin

− 1
)

. (4.4)

Vectors ~a, ~d, ~h in (4.1) − (4.3) are the unknown coefficients, which are pinned down by

imposing that Ĉ(K, B, τ ;~a), ψ̂τ (K, B, ~d) and ψ̂B(K,B,~h) satisfy the three Euler equations and

the laws of motion at a number of collocation points. The number of collocation points is set

so that the number of equations equals the number of unknown coefficients. In our exercise we

choose Chebyshev collocation. It should be noted that the approximation of the debt policy,

equation (4.3), embeds already the approximation of the tax policy in terms of K and B. On the

other hand, the approximation of the consumption function, (4.1), must be done in terms of K,

B and τ , in order to obtain the derivatives of the consumption function which show up in the

Generalized Euler equations.

The value function, W (K, B), can then be easily computed as follows. Using the solutions for

consumption, taxation and the issue of debt, the value function is approximated by,

Ŵ (K, B,~e) =
nv

k∑

i=0

nv
b∑

j=0

eijφij(K,B), (4.5)

where the vector ~e contains the unknown coefficients in the value function, which are pinned down

so that (4.5) solves the government’s Bellman equation at a number of collocation points.

5 Conclusions

This paper analyzes Markov-perfect optimal fiscal policy in a neoclassical economy with

physical capital and public debt. We extend a recent literature on time-consistent policies to

economies where the government chooses government expenditures and households hold physical

capital and public debt in their portfolios. Previous studies on Markov-perfect policy abstract

from either public debt, by assuming a government’s period-by-period balanced budget constraint,

or from physical capital, assuming that labor is the only factor of production.

We characterize and compute Markov-perfect optimal fiscal policy in our model economy

and find two steady-state equilibrium configurations. We prove that the steady-state Ramsey

equilibrium is a Markov-perfect equilibrium. In addition, our numerical computations find a
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stable, steady-state Markov-perfect equilibrium with positive income taxation and positive public

debt. In a calibrated version of the model, this latter equilibrium yields an income tax rate

close to 20% and a debt-GDP ratio in the order of 60%. These numbers are in line with those

observed in most developed economies. Although the framework presented in this paper displays

an expectations-driven multiplicity of equilibria —and thus fails to provide predictions on optimal

policy— we argue that it can however be useful as a positive theory of fiscal policy. That is, on

how actual policies are determined. The equilibrium with no distortions involves initial tax rates

and levels of government asset holdings which may not be feasible in most fiscal constitutions.

This could leave the equilibrium with positive long-run distortions as the only Markov-perfect

equilibrium of our economy.

Our framework is rather stylized. We have abstracted from endogenous labor supply to focus

instead on the role of public debt in economies where the government lacks the ability to commit

to future policies. Although endogenizing labor supply, and allowing then the government to

set different taxes on capital and labor, would not change our results qualitatively, it might

have important quantitative implications. However, the computational costs associated with an

extension of our framework in that direction are likely to be insurmountable. As it was made

clear in Section 4, we are approximating three unknown functions —consumption as a function

of capital, debt and taxes, and two government policies as functions of capital and debt— to

solve three functional equations. Adding two new unknown functions —labor supply and the

tax policy on labor— and two new functional equations will impair the application of projection

methods in our set-up.

6 Appendix

Proof of Proposition 1:

The problem solved by a government with full commitment is to set infinite sequences {Gt, τt, Bt}
so that the implied competitive equilibrium maximizes welfare. That is,

max
{Gt,τt,Bt+1}

∞∑

t=0

βtU(Ct, Gt) (6.1)

s.t.

Ct + Kt+1 + Gt = f(Kt) + (1− δ)Kt (6.2)

Gt + [1 + rt − δ]Bt = Bt+1 + τt[(rt − δ)(Kt + Bt) + ωt] (6.3)

Uc(Ct, Gt) = βUc(Ct+1, Gt+1)[1 + (1− τt+1)(rt+1 − δ)], t = 0...∞, (6.4)

K0 and B0 are given.
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After defining new variables r̃t ≡ (1− τt)rt and ω̃t ≡ (1− τt)ωt, and formulating the problem

of the government as choosing after-tax rental prices, the first-order condition with respect to

Kt+1 (by using the primal approach) can be written as,

Γt = β [Λt+1(rt+1 − r̃t+1)) + Γt+1(1 + rt+1 − δ)] , (6.5)

where Γt and Λt are Lagrange multipliers. Using the Euler equation, equation (6.5) in a steady-

state equilibrium is,

(Γ + Λ)(r − r̃) = 0, (6.6)

from which it follows that τ = 0 in the steady-state equilibrium, and, consequently, B < 0.

Proof of Proposition 2:

The first-order condition to B′ in government’s maximization problem (2.11) is given by,

UGGB′ − βṼ ′
K′GB′ + βṼ ′

B′ = 0. (6.7)

The first-order condition to τ in government’s maximization (2.12) is,

UcCτ + UG

(
Gτ + GB′B

′
τ

)− βṼ ′
K′

(
Cτ + Gτ + GB′B

′
τ

)
+ βṼ ′

B′B
′
τ = 0, (6.8)

which, after making use of (6.7), simplifies to,

UcCτ + UGGτ − βṼ ′
K′ (Cτ + Gτ ) = 0. (6.9)

Envelope conditions, along with W (K, B) = Ṽ (K, B), yield,

WK = UcCK + UGGK + βW ′
K′ [1 + fK − δ − CK −GK ] (6.10)

WB = UcCB + UGGB + βW ′
K′ [−CB −GB] . (6.11)

Forwarding these envelope conditions one period and using the above first-order conditions,

we obtain the two Generalized Euler Equations, (2.13) and (2.14) , presented in Proposition 2.

Proof of Proposition 3:

As shown in Proposition 1, in a steady-state Ramsey equilibrium income taxes are zero and

the government holds negative debt (assets) to finance the provision of the public good. The

government does not rely on distortionary taxation, and the efficiency condition, Uc = UG, is

attained. In this proof we show that the system of equations characterizing steady-state Markov-

perfect equilibria has a solution with these properties.
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Let us start by assuming that Uc = UG. Then, from (6.9) it follows that Uc = βWK . From

(6.11) it is then easy to see that WB = 0. Finally, equation (6.10) becomes,

1
β

= 1 + fK − δ, (6.12)

which, along with the consumer’s Euler equation, implies that τ = 0.

Proof of Proposition 4:

The proof follows directly from the first-order and envelope conditions presented above, along

with the non-arbitrage condition. Thus, by plugging the first-order condition to issues of debt

evaluated at a steady-state Markov-perfect equilibrium into (6.11), it obtains that at a steady-

state equilibrium,

(1 + βGB)WB = (Uc − UG − βWB)CB. (6.13)

Then, plugging GB = −(1− τ)q − 1 and the non-arbitrage condition, q = fK − δ, into equation

(6.13) and using the household’s Euler equation, it follows that CB = 0 at the steady state.

Proof of Proposition 5:

Here we prove that the two steady-state equilibria —one with positive distortions and one

without— are not associated with the same pair of decision rules ψτ and ψB. To do this, we show

that the policy rules generating the steady state with no distortions are the only limit of policy

rules in the finite-horizon economy as the planning horizon goes to infinity. The proof, although

algebraically tedious, is straightforward.

In the finite-horizon economy with last period denoted by T , we have KT+1 = BT+1 = 0.

Therefore, in period T households simply consume all their resources. The problem of the time-T

government is then,

max
τT

U(CT , GT )

s.t.

CT = KT + BT + (1− τT ) [f(KT )− δKT + qT BT ] (6.14)

GT = τT [f(KT )− δKT + qT BT ]− (1 + qT ) BT . (6.15)

The first-order condition to this problem is,

Uc(T ) = UG(T ), (6.16)

where Uc(T ) denotes Uc(CT , GT ).

In period T − 1, the households’ Euler equation is,

Uc(CT−1, GT−1) = βUc(CT , GT ) [1 + (1− τT ) (fK (KT )− δ)] , (6.17)
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and the non-arbitrage condition between the two assets is qT = fK (KT ) − δ. The fiscal policy

chosen by the time-(T − 1) government is obtained in a two-step maximization problem. First,

given τT−1, the issue of debt solves,

max
BT

{U(CT−1, GT−1) + βU(CT , gT )}
s.t.

GT−1 = BT + τT−1 [f(KT−1)− δ + qT−1BT−1]− (1 + qT−1) BT−1 (6.18)

KT = f(KT−1) + (1− δ)KT−1 −GT−1 − CT−1 (6.19)

and equations (6.14), (6.15), (6.16) and (6.17).

The first-order condition to this problem is,

UG(T − 1)
∂GT−1

∂BT
+ β

[(
Uc(T )

dCT

dKT
+ UG(T )

dGT

dKT

)
dKT

dBT
+

(
Uc(T )

dCT

dBT
+ UG(T )

dGT

dBT

)]
= 0

(6.20)

Then, τT−1 is the solution to,

max
τT−1

{U(CT−1, GT−1) + βU(CT , gT )}
s.t.

equations (6.14), (6.15), (6.16), (6.17), (6.18), (6.19) and (6.20).

The first-order condition is,

Uc(T − 1)
∂CT−1

∂τT−1
+ UG(T − 1)

∂GT−1

∂τT−1
+ β

[
Uc(T )

dCT

dKT
+ UG(T )

dGT

dKT

]
∂KT

∂τT−1
= 0 (6.21)

Now, from feasibility conditions at T and T − 1 we obtain that dCT
dBT

= −dGT
dBT

, ∂KT
∂τT−1

=

−∂CT−1

∂τT−1
− ∂GT−1

∂τT−1
and dKT

dBT
= −dGT−1

dBT
= −1. Using these values in equations (6.20) and (6.21), we

have [
Uc(T − 1)− UG(T − 1)

] ∂CT−1

∂τT−1
= 0. (6.22)

Since ∂CT−1

∂τT−1
6= 0, it thus follows that Uc(T−1) = UG(T−1). Then, using the fact that dCT

dKT
+ dGT

dKT
=

1 + fK (KT )− δ, equation (6.21) yields,

Uc(T − 1) = βUc(T ) [1 + fK (KT )− δ] . (6.23)

From this equation and the household’s Euler equation it follows that τT = 0.

Solving the problem for period T − 2, yields τT−1 = 0. By proceeding in this way up to the

initial period, it can be shown that all taxes are zero but the initial one. That is, τ0 6= 0 and

τt = 0 for all t from 1 to T .
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Dı́az-Giménez, J., Giovanetti, G., Marimon, R. and Teles, P. (2007). “Nominal Debt as a

Burden on Monetary Policy.” Review of Economic Dynamics, forthcoming.

Judd, K., (1992). “Projection Methods for Solving Aggregate Growth Models.” Journal of

Economic Theory, vol. 58, pp. 410–452.

Judd, K., (1985). “Redistributive Taxation in a Simple Perfect Foresight Model.” Journal of

Public Economics, vol. 28, pp. 59–83.

Judd, K., (1998). Numerical Methods in Economics. Cambridge, Mass.: MIT Press.

Klein, P. and Rı́os-Rull, J., (2003). “Time-Consistent Optimal Fiscal Policy.” International

Economic Review, vol. 44, no. 4, pp. 1207–1405.

Klein, P., Krussel, P., and Rı́os-Rull, J.-V., (2006). “Time-Consistent Public Policy.” Review

of Economic Studies, forthcoming.

Krusell, P., Martin, F., and Rı́os-Rull, J., (2006). “Time-Consistent Debt.” Manuscript.

Lucas, R. and Stokey, N., (1983). “Optimal Fiscal and Monetary Policy in an Economy

without Capital.” Journal of Monetary Economics, vol. 12, no. 1, pp. 55–94.

Martin, F., (2006). “A Positive Theory of Government Debt.” Manuscript.

Ortigueira, S., (2006). “Markov-perfect optimal Taxation.” Review of Economic Dynamics,

23



vol. 9, pp. 153–178.

Persson, M., Persson, T. and Svensson, L., (1988). “Time Consistency of Fiscal and Monetary

Policy.” Econometrica, vol. 55, pp. 1419–1432.

Persson, T. and Svensson, L., (1989). “Why a Stubborn Conservative would Run a Deficit:

Policy with Time-Inconsistent Preferences.” The Quarterly Journal of Economics, vol. 104, no.

2, pp. 325–345.

Song, Z., Storesletten, K. and Zilibotti, F., (2007). “Rotten Parents and Disciplined Children:

A Politico-Economic Theory of Public Expenditure and Debt.” Manuscript.

24



Policy Functions

Figure 3. Gov. Expenditure Function
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Figure 4. Consumption Function
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Figure 1. Tax Policy Function
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Figure 2. Debt Policy Function
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Notes: Figures 1 to 4 show the policy functions in a Markov-perfect equilibrium. The

government’s tax policy is shown in Figure 1. The government’s debt policy is shown in Figure

2. The government’s spending policy is displayed in Figure 3. Finally, the private consumption

function is shown in Figure 4.
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Equilibrium Dynamics
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Figure 7. The K’=K and B’=B Loci
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Figure 5. Net Investment, K’-K
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Figure 6. Change in Public Debt, B’-B
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Notes: Figures 5 to 7 show the dynamics around the steady-state equilibrium with positive

income taxation. Figure 5 shows net investment; Figure 6 shows the change in government debt;

and Figure 7 shows the K ′ = K and B′ = B loci.
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Errors

Figure10. Generalized Euler Equation 2 Errors
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Figure 11. Bellman Equation Errors
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Figure 8. Euler Equation Errors
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Figure 9. Generalized Euler Equation 1 Errors
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Notes: Figures 8 to 11 show relative errors of Chebyshev collocation for the Euler equation

(Figure 8), Generalized Euler equations (Figures 9 and 10) and the Bellman equation (Figure

11).
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