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Abstract
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Wright (2005)’s model, frictions that allow us to endogenize bonds acceptability. We derive equi-
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1 Introduction

Some categories of nominal government-issued securities share the features that characterize money.

Namely, they are payable-to-the-bearer and virtually default-free.1 Money is the generally accepted

medium of exchange in most economies, however, despite the fact that nominal bonds yield their

bearers a greater rate of return. This seems to violate a simple no-arbitrage condition: Why is it

that money coexists with bonds exhibiting dominance in the rate of return?

The violation of this no-arbitrage condition, which is commonly referred to as the ‘rate-of-return

dominance of money’ (or ‘coexistence puzzle’), has been a challenging issue in monetary economics

and dates back at least as far as [13]. It is often argued that riskless nominal bonds rate-of-return

dominate money because they are less liquid, namely the nominal interest rate on securities is a

compensation for the relative illiquidity of these assets.2 This argument gives rise the following

question: Why are bonds less liquid than money? To put it different, What kind of frictions make

nominal bonds less liquid than money?

An answer to this question can be found in [16]: nominal bonds are not, because of physical

or informational reasons, as attractive as cash in goods trade. For example, today the minimum

size of U.S. Treasury-bills (T-bills) is $1,000 which is greater than the value of many transactions.3

Large denomination is not sufficient, however, to preclude bonds from circulating as a medium of

exchange. Financial intermediaries can convert large-denominated government-issued securities into

small-denominated privately-issued securities —securities that are safe by virtue of being backed

by the underlying securities. Thus, in absence of the cost of such intermediation, the coexistence

puzzle may be explained by legal restrictions that prevent arbitrage between T-bills and currency-

like assets. (A detailed discussion on this can be found in [1], [3], [9], and [27].) Another way to

have money and bonds coexist is to restrict bonds acceptability.

This paper studies the coexistence of money and bonds by using a framework in which the role

of money is formalized explicitly. When the buyers’ cash constraint is binding, the equilibrium

nominal interest rate is an average between zero and the liquidity premium on money with weights

distributed according to the degree of liquidity of bonds. When the cash constraint is not binding
1One notable example is the issuance of ‘bons’ by the French government during the period 1915-1927 (see [23]).
2See, for example, [1], [3], [14], [17], [26], and [29]. For a more general discussion see [18].
3Moreover, T-bills are entirely book-entry securities and no tangible certificate is given to investors.
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the interest rate is zero, and bonds and money are essentially the same thing (means of payments.)

We show that money and bonds are competing media of exchange when they have the same value

at the margin, and the equilibrium interest rate depends on the cost of being informed.

Initially, we assume that bonds acceptability is exogenous. We then endogenize acceptability by

introducing additional frictions into the baseline model. We derive equilibrium conditions such that

the nominal interest rate varies within a given interval depending on the intensity of these frictions.

A number of papers study liquidity issues. [19] examine an economy where money and real

assets are competing media of exchange. They show that, in the absence of money, the economy

over-accumulates capital if the stock real assets is too low to sustain efficient trade. In this case,

money is welfare improving in that it reduces capital overaccumulation. [17] builds an asset-pricing

model in which financial assets (equity shares and government risk-free real bonds) are valued for

their liquidity, not only for the stream of consumption goods that they represent. They show that

the price of an asset will be higher when the asset is held for its liquidity value, and its rate of return

will be lower than it would be if the asset was not used for payment. In a different but related paper,

[10] investigate the effect of monetary policy on prices and allocations. They show that money is

valued if and only if real assets are scarce, in which case money and real assets compete as means

of payment. When inflation increases (i.e. the return on money decreases), a no arbitrage condition

implies that the price of the asset increases in order to lower its real return. [22] extend [10] by

modeling different acceptabilities. They endogenize acceptability and show that, in equilibrium,

assets have different liquidity properties. Our model allows for competing media of exchange but,

unlike previous works, extends the analysis in two directions. First, we focus on the competition

between money and nominal assets (i.e. government risk-free nominal bonds), which allows us to

endogenize the nominal interest rate, second, and more importantly, we endogenize the acceptability

of these assets by explicitly introducing additional frictions into the baseline model.

In a recent paper, [7] study an economy in which agents hold outside bonds and inside bonds.

They show that the optimal allocation with outside bonds dominates the optimal allocation with

inside bonds. In their model bonds are illiquid. Here we allow outside bonds to be liquid. In another

paper, [16] constructs a model in which agents can trade money for bonds before entering the goods

market and after having observed the taste shock. He finds that illiquid bonds are welfare improving,
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while liquid bonds are inessential.4 In contrast, we derive differential acceptability and show that

(partially) liquid bonds are essential.

The paper is organized as follows. Section 2 describes the basic framework of the model. Section 3

characterizes stationary equilibria and derives the main results of the analysis. Section 4 endogenizes

partial acceptability. The Conclusions end the paper.

2 The model

The basic setup is [20] and [24]. Time is indexed by t ∈ N. In each period t there are three markets

that open sequentially. There is a R [0, 1] continuum of infinitely-lived agents, and two types of

perishable commodities: general and special goods. Specialization is described as follows. In the

second market, an agent meets someone who produces a good he wishes to consume with probability

σ ∈ (0, 1/2], and meets someone who likes the good he produces with the same probability σ; with

probability 1− 2σ he meets no one. This leads to a double-coincidence-of-wants problem: an agent

can either produce or consume in a meeting but not both. We refer to consumers as buyers and

producers as sellers; those who neither produce nor consume are nontraders.

Buyers get utility u (q) from q consumption of the special good, where u′ (q) > 0, u′′ (q) < 0,

u′ (0) = ∞, and u′ (∞) = 0. Producers incur utility cost c (q) from producing q units of output. Let

q∗ denote the solution to u′ (q∗) = c′ (q∗).

In the third market all agents consume and produce the general good, getting utility U (x) from

x consumption, with U ′ (x) > 0 , U ′ (0) = ∞, U ′ (∞) = 0 and U ′′ (x) ≤ 0. Let x∗ be the solution

to U ′ (x∗) = 1. All agents can produce the general good from labor using a linear technology. They

discount between market 3 and the next-period market 1, but not between market 1 and market

2 nor between market 2 and market 3. This is not restrictive since all that matters is the total

discounting between one period and the next (e.g., [25]).

Individual actions are not observable in the third market so as to avoid contagion equilibria ([2]

and [21]). Also, it is assumed that all agents are anonymous. Consequently, trade credit is ruled

out and transactions are subject to a quid pro quo restriction, so there is a role for a medium of

exchange ([15] and [28]).
4As in [16], other papers like [8] and [26] assume that agents can trade between money and bonds after having

observed the preference shocks.
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Figure 1: Timing of events

At the opening of the first market, agents learn their type (buyers, sellers or nontraders). After

types are revealed, agents can invest their money in a risk-free asset a bearing the gross nominal

rate of return 1 + i with i ≥ 0. The interest rate i is kept exogenous until Section 4.

Following [29], nominal bonds are one-period risk-free assets that automatically turn into money

in market 3. Suppose there are vending machines maintained by the government which offer such

bonds in exchange for cash. We assume a ∈ R+, so that agents can invest but not borrow. Interest

rates on bonds are financed by lump-sum taxes levied by the government in market 3.

There is a central bank that controls the money supply at time t, Mt > 0. Also, it is assumed

that Mt = γMt−1, where γ > 0 is constant and new money is injected, or withdrawn if γ < 1,

as lump-sum transfers πMt−1 = (γ − 1)Mt−1 to all agents. We restrict attention to policies where

γ ≥ β, with β ∈ R (0, 1) denoting the discount factor. The time subscript t is omitted and shorten

t + 1 to +1, etc. in what follows.

The timing of events is shown in Figure 1. At the beginning of market 1 agents observe their type

and receive the lump-sum money transfers. Then, vending machines are activated and individuals

5



Figure 2: Environment

have the opportunity to invest their cash in nominal bonds. After investment decisions have been

made, bond vending machines get disabled and the second market opens. In the second market,

agents learn whether or not they will be able to accept nominal bonds for payment in bilateral

meetings. In the third market, they produce and consume the general good, pay taxes, and receive

the principal plus interest on bonds. The structure of this economy is shown in Figure 2.

Let φ = 1/P be the real price of money and P the price of goods in market 3. We study steady

state equilibria, where aggregate real money balances are constant. We refer to this as stationary

equilibrium

φM = φ−1M−1 (1)

which implies φ−1/φ = M/M−1 = γ.

In nominal terms, we define the government budget constraint as follows

PG + Ai = T (2)

where A is the risk-free asset (government debt) outstanding at the opening of market 3, T is a

lump-sum nominal tax, and PG is spending for government consumption. Equation (2) states that

the government expenditure (PG + Ai) is financed by tax revenues (T ). To simplify the analysis,

we assume G = 0.
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3 Value functions

In what follows, we look at a representative period t and work backwards from the third to the first

market.

Consider a stationary equilibrium. In the third market agents produce h units of the general

good using h hours of labor, pay taxes, receive repayment of the investment plus interest, consume

x units of the general good, and adjust their money balances. The real wage per hour is normalized

to one. Let V1(m1) denote the expected value from entering market 1 with m1 money balances, and

V3(m3, a3) the expected value from entering the third market with m3 units of money and a3 bonds.

Hence, the representative agent’s problem in market 3 is

V3 (m3, a3) = max
x,h,m1,+1

[U (x)− h + βV1,+1 (m1,+1)] (3)

such that

x = h + φ (m3 −m1,+1) + φ (1 + i) a3 − φT (4)

where m1,+1 is the money taken into period t + 1. Substituting h from (3) into (4) yields

V3 (m3, a3) = φ [m3 + (1 + i) a3 − T ]

+ max
x,m1,+1

[U (x)− x− φm1,+1 + βV1,+1 (m1,+1)] .
(5)

The first order conditions (FOCs) for (5) are

U ′ (x) = 1,

βV ′
1,+1 (m1,+1) = φ,

(6)

where βV ′
1,+1 (m1,+1) is the marginal benefit of taking money into the next period, and φ is its

marginal cost. Due to concavity of u, m1,+1 is unique; so all agents exit the third market with the

same amount of cash.

Two results from (6) are familiar with [20]: (i) agents consume the efficient quantity x∗ of the

general good in market 3, where x∗ satisfies U ′ (x∗) = 1; and (ii) m1,+1 is independent of a3 and m3;

thus, the distribution of money holdings is degenerate at the beginning of the next period. This is

due to the quasi-linearity hypothesis in (3).
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From the envelope theorem, it holds that

V m
3 = φ,

V a
3 = φ (1 + i) .

(7)

In market 2, agents are subject to an idiosyncratic shock: with probability α ∈ [0, 1] they can

use both money and bonds for payment in goods trade, while with probability 1− α they can use

only money. Hence, α is a measure of the degree of liquidity of bonds. Let us denote ‘type-II

meeting’ a meeting in which both assets (money and bonds) can be used for payment, and ‘type-I

meeting’ a meeting in which only money is accepted. The measure of the liquidity of bonds, α, is

kept exogenous until Section 4.

Let V2,b(m2,b, a2,b) be the value function of a buyer who enters the second market with m2,b units

of money and a2,b bonds; V2,`(m2,`, a2,`) is the value function for an agent who is not a buyer (i.e.

he is either a seller or nontrader), and has m2,` units of money and a2,` bonds at the beginning of

market 2. We refer to sellers and nontraders as nonbuyers. Hence, the expected utility for an agent

entering the second market is:

V2(m2,b, a2,b,m2,`, a2,`) = σV2,b(m2,b, a2,b) + (1− σ) V2,`(m2,`, a2,`) (8)

where
V2,b(m2,b, a2,b) = α [u (qII) + V3 (m2,b − zm,b, a2,b − za,b)]

+ (1− α) [u (qI) + V3 (m2,b − zm,b, a2,b)]
(9)

and
V2,`(m2,`, a2,`) = σα

1−σ [−c (qII) + V3 (m2,` + zm,s, a2,` + za,s)]

+σ(1−α)
1−σ [−c (qI) + V3 (m2,` + zm,s, a2,`)]

+1−2σ
1−σ V3 (m2,`, a2,`) .

(10)

Expression (9) indicates that: (i) with probability α a buyer is in a type-II meeting, which means

that he consumes a quantity qII of goods, pays zm,b amount of money, and gives up za,b bonds (first

line); (ii) with probability 1− α he is in a type-I meeting, which means that he consumes qI units

of goods, and spends zm,b amount of money (second line). The value function (10) means that three

events may occur for a nonbuyer in market 2: (i) with probability σα/ (1− σ) she is a producer in a
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type-II meeting, in which case she produces a quantity qII of the special good, receives zm,s amount

of money and za,s bonds (first line); (ii) with probability σ (1− α) / (1− σ) she is a producer in

a type-I meeting, which means that she produces qI units of the special good, and receives zm,s

amount of money (second line); (iii) with probability (1− 2σ) / (1− σ) she is a nontrader (third

line).

We assume that the terms of trade {qI , qII , zm, za} are determined by generalized Nash bargain-

ing.5 Let θ denote the bargaining power of the seller, with zm = zm,b = zm,s and za = za,b = za,s.

Then, {qII , zm, za} solves

max
qII ,zm,za

[−c (qII) + φzm + φ (1 + i) za]
θ [u (qII)− φzm − φ (1 + i) za]

1−θ

s.t.

zm ≤ m2,b

za ≤ a2,b,

(11)

when in a type-II meeting, and {qI , zm} solves

max
qI ,zm

[−c (qI) + φzm]θ [u (qI)− φzm]1−θ

s.t.

zm ≤ m2,b,

(12)

when in a type-I meeting.

From (11), the net gains from trade for buyers and sellers in type-II meetings are the following.

For a seller, the surplus from trade is −c (qII) + V3(m2,` + zm, a2,` + za), and threat point given by

her continuation value V3(m2,`, a2,`). So, using linearity of V3, her net surplus is −c (qII) + φzm +

φ (1 + i) za. For a buyer, the gain from trade is u (qII) + V3(m2,b − zm, a2,b − za), and the threat

point V3(m2,b, a2,b). Again, by linearity of V3, his net surplus is u (qII)−φzm−φ (1 + i) za. The first

constraint in (11) means that a buyer in a type-II meeting cannot spend more cash than what he

brings into market 2. The second constraint means that he cannot give up more bonds than what

he has in his portfolio. In type-I meetings bonds are not accepted for payment, so the net surplus

from trade is −c (qI) + φzm for sellers, and u (qI) − φzm for buyers. As usual in [20]-like models,
5See [25] for alternative price mechanisms (price posting, competitive search).
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the terms of trade, denoted as {qII , zm, za} and {qI , zm}, depend on the buyer’s portfolio of assets,

{m2,b, a2,b}, and they do not depend on the seller’s, {m2,s, a2,s}.
The solution to (11) and (12) are

φzm + φ (1 + i) za = g (qII) ≡ θu′ (qII) c (qII) + (1− θ) u (qII) c′ (qII)
θu (qII) + (1− θ) c′ (qII)

(13)

and

φzm = g (qI) ≡ θu′ (qI) c (qI) + (1− θ) u (qI) c′ (qI)
θu (qI) + (1− θ) c′ (qI)

, (14)

respectively. Note that constraints in (11) and (12) always bind; it is easy to show that buyers spend

all their money in type-II and type-I meetings, and give up all their bonds in type-II meetings.

Thus, assuming that the sellers have all the bargaining power (θ = 1), expressions (13) and (14) can

be rewritten as follows:

φm2,b + φ (1 + i) a2,b = g (qII) = c (qII) (15)

and

φm2,b = g (qI) = c (qI) . (16)

Before analyzing the agent’s problem in market 1 we have to derive the marginal value of money

and the marginal value of bonds, for buyers and nonbuyers, in market 2. Let us consider buyers

first. Take the differential of V2,b(m2,b, a2,b) with respect to m2,b and get

V m
2,b = φ

{
α

u′ (qII)
c′ (qII)

+ (1− α)
u′ (qI)
c′ (qI)

}
(17)

where we have used ∂qII/∂m2,b = φ/c′ (qII) from (15) , ∂qI/∂m2,b = φ/c′ (qI) from (16) , and the

fact that buyers in market 2 spend all their money holdings, i.e. ∂zm,b/∂m2,b = 1. Expression (17)

means that the marginal value of money for a buyer in market 2 is given by his marginal benefit from

consumption when in a type-II meeting (first term), plus his marginal benefit from consumption

when in a type-I meeting (second term). So, the full return on money for a buyer in market 2 equals

its liquidity return, return that depends on the extent to which money is accepted as a medium of

exchange.
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Now, take the differential of V2,b(m2,b, a2,b) with respect to a2,b and get

V a
2,b = φ (1 + i)

{
α

u′ (qII)
c′ (qII)

+ (1− α)
}

(18)

where use of ∂qII/∂a2,b = φ (1 + i) /c′ (qII) from (15) has been made. Since buyers in a type-II

meeting spend all their bond holdings, then ∂za,b/∂a2,b = 1. Expression (18) indicates that the full

return on bonds for a buyer in market 2 is given by two components: (i) the liquidity return, i.e.

the asset’s usefulness to facilitate trade in type-II meetings, and (ii) the intrinsic rate of return, i.e.

the nominal interest rate i they yield at the end of each period.

For an agent who is not a buyer in the second market, the marginal value of money and the

marginal value of bonds must be equal to the marginal benefit of carrying these objects into the

third market:

V m
2,` = φ (19)

and

V a
2,` = φ (1 + i) . (20)

Since nonbuyers cannot consume special goods they do not receive any consumption gain from

having more units of money or more bonds in market 2.

At the opening of market 1, new money is injected (or withdrawn) by lump sum transfers.

Then, agents realize whether they will be buyers or nonbuyers in the next market 2. After types are

revealed, bond vending machines are activated and investment decisions can be made. The agent’s

expected utility of entering market 1 with m1 units of money is

V1(m1) = σV2,b(m1 + πM−1 − a1,b, a1,b)

+ (1− σ)V2,`(m1 + πM−1 − a1,`, a1,`),
(21)

which means that he is a buyer, with probability σ, in which case he will invest a1,b amount of

money buying a1,b bonds (first line); he is a nonbuyer, with probability 1− σ, which means that he

will invest a1,` amount of money buying a1,` bonds (second line). We now derive the optimal choice

of a1,b and a1,` for buyers and nonbuyers, respectively. (Note that the quantity of bonds acquired

in market 1 is carried forward into market 2, so a1,b = a2,b and a1,` = a2,`.)

11



The buyer’s problem in market 1 is as follows:

max
a1,b

V2,b(m1 + πM−1 − a1,b, a1,b)

s.t.

m1 + πM−1 − a1,b ≥ 0

a1,b ≥ 0,

(22)

where the first constraint means that he cannot invest more cash than what he brings into the first

market, m1, plus the transfer πM−1. The second constraint means that he cannot sell bonds (i.e.

he cannot borrow). The FOCs for (22) are:

V a
2,b − V m

2,b − µb + ζb = 0

µb (m1 + πM−1 − a1,b) = 0

ζba1,b = 0,

(23)

where µb and ζb are the Lagrange multipliers for the first, respectively the second, constraint in

(22). Of course, both constraints in (22) cannot bind simultaneously, which means that at least one

multiplier must be zero.

Lemma 1 If V m
2,b = V a

2,b, then a1,b ∈ [0,m1 + πM−1] .

Proof. Assume V a
2,b = V m

2,b. Then, it holds that µb = 0 and ζb = 0, so a1,b ∈ [0,m1 + πM−1].

Buyers make their investment decisions in market 1 on the basis of the next-market-2’s marginal

values of money and bonds, V m
2,b and V a

2,b. If V a
2,b = V m

2,b, buyers in market 1 are indifferent (they

randomize) between buying bonds and holding cash, so a1,b ∈ [0,m1 + πM−1].

The following result can now be established:

Proposition 1 If V m
2,b = V a

2,b, money and bonds are competing media of exchange in market 2.

Proof. Assume V m
2,b = V a

2,b. Then, a buyer in market 1 is indifferent between investing and not

investing, so he will enter market 2 with a positive amount of cash and bonds.
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The problem for a nonbuyer in the first market is:

max
a1,`

V2,`(m1 + πM−1 − a1,`, a1,`)

s.t.

m1 + πM−1 − a1,` ≥ 0

a1,` ≥ 0,

(24)

with FOCs
V a

2,` − V m
2,` − µ` + ζ` = 0

µ` (m1 + πM−1 − a1,`) = 0

ζ`a1,` = 0,

(25)

where µ` and ζ` are the Lagrange multipliers for the first, respectively the second, constraint in (24).

Again, at least one multiplier must be zero. If the nominal interest is strictly positive, nonbuyers

will always invest all their money in nominal bonds, i.e. the first constraint in (24) binds. To see this

note that V a
2,` > V m

2,` iff i > 0, directly from (19), (20) and (25). This observation is very intuitive if

not obvious: money and bonds are “illiquid” objects for nonbuyers in the second market, but bonds,

rather than money, yield a strictly positive interest rate if i > 0.

Let us now derive the marginal value of money for an agent in market 1. Take the differential

of (21) with respect to m1 and get

V ′
1(m1) = σ

{
V m

2,b

[
1− ∂a1,b

∂m1

]
+ V a

2,b

∂a1,b

∂m1

}
+ (1− σ) V a

2,`. (26)

Expression (26) means that buyers in market 1 carry a fraction 1− ∂a1,b\∂m1 of additional unit

of money into the second market (first term); they spend the complement fraction ∂a1,b\∂m1 buying

bonds (second term). The fraction of money invested in bonds (∂a1,b\∂m1) depends on the buyer’s

marginal values of money and bonds in market 2, i.e. V m
2,b and V a

2,b. By Lemma 1, if V m
2,b = V a

2,b,

then ∂a1,b\∂m1 ∈ R[0, 1]. The third term in (26) refers to nonbuyers and means that they spend

the additional unit of money buying bonds (i.e. ∂a1,`\∂m1 = 1) if i > 0. We can now define the

equilibrium:

Definition 1 A monetary equilibrium is a time path for asset prices {φ, φ (1 + i)}, asset holdings
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{m1,m2,b,m2,`,m3, a1,b, a1,`, a2,b, a2,`, a3}, the second market terms of trade {qII , qI , zm, za}, and the

third market allocation {x, h}, satisfying (5), (11), (12) , (22) and (24) , with φ > 0, φ(1 + i) > 0,

and m1 > 0. In steady state, real variables are constant over time, and (1) holds.

At this point of the analysis, we are ready to endogenize the nominal interest rate. To do this

we impose the equilibrium condition such that money and bonds coexist as competing media of

exchange, V a
2,b = V m

2,b, and solve for i. By (17) and (18), it follows

φ (1 + i)
{

α
u′ (qII)
c′ (qII)

+ (1− α)
}

= φ

{
α

u′ (qII)
c′ (qII)

+ (1− α)
u′ (qI)
c′ (qI)

}

or, rearranging terms and simplifying,

i =
αu′(qII)

c′(qII) + (1− α) u′(qI)
c′(qI)

αu′(qII)
c′(qII) + (1− α)

− 1. (27)

The equilibrium interest rate is the excess liquidity return on money over bonds, excess liquidity

return which is proportional to the probability of a type-I meeting —as opposed to a type-II

meeting. In other words, the equilibrium interest rate is the liquidity premium on government

bonds when money and bonds share the same full return at the margin (V m
2,b = V a

2,b). Directly from

(27), the next result can be established.

Lemma 2 The following holds:

(1) If α = 1, then i ≡ i = 0.

(2) If α = 0, then i ≡ ı̄ = u′ (qI) /c′ (qI)− 1.

(3) If α ∈ (0, 1) , then i ∈ (i, ı̄).

Proof. (Statements 1 and 2.) Straightforward from substitution into (27).

(Statement 3.) This result is direct consequence of the fact that i is continuous and decreasing

in α.

4 Endogenous acceptability

So far we have assumed that the agents’ decision about using or not nominal bonds for payment in

market 2 was exogenous. We will now endogenize it by explicitly introducing more frictions in the
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baseline setup.

Assume that anyone can costlessly produce counterfeit bonds, bonds that are identical to their

authentic counterparts but that perish after they change hands. There is a firm —whose shares

are equally held by all agents— that can costlessly produce counterfeit detector machines (CDMs),

and whose profits are distributed to all agents as dividends at the end of each period. A CDM is

a portable object that perfectly verifies the authenticity of bonds in market 2. For simplicity, we

assume that CDMs perish immediately at the end of the period. Anyone in market 2 can buy a

CDM at a price ε ∈ R+ payable in the next third market. The agents’ decision to buy or not a CDM

takes place in market 2, before decentralized trade begins. This decision is public information. The

latter assumption assures that agents without a CDM do not accept bonds for payment in bilateral

trades.6

As before, we look at a representative period t and work backwards from the third to the first

market. Let V C
3 be the value function of an agent with a CDM in market 2, and V N

3 the value

function of an agent without a CDM in market 2. Hence,

V C
3 (m3, a3) = φ [m3 + (1 + i) a3 − T + D − ε]

+ max
x,m1,+1

[U (x)− x− φm1,+1 + βV1,+1 (m1,+1)] ,
(28)

and
V N

3 (m3, a3) = φ [m3 + (1 + i) a3 − T + D]

+ max
x,m1,+1

[U (x)− x− φm1,+1 + βV1,+1 (m1,+1)] .
(29)

From (28), if an agent buys a CDM in market 2, she pays ε and receives the dividend D in

market 3. From (29), an agent without a CDM in market 2 only receives the dividend D in market

3. In all other respects the value functions (28)-(29) are the same as those in Section 3. The FOCs

for (28)-(29) are given by (6) and envelope conditions by (7).

In nominal terms, the firm’s budget constraint in equilibrium is

σαε = D, (30)
6To see this, consider a meeting between a buyer and an seller without a CDM. Since the buyer has perfect

knowledge about the fact that his partner does not have a CDM, he will only offer counterfeits bonds for payment.
But the seller anticipates this, so she will refuse to take anything other than money.
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which means that revenues from sales of CDMs are redistributed to shareholders as dividends.

At the opening of market 2, sellers decide whether they buy a CDM or not. (Note that buy-

ers don’t need a CDM since they can only consume in market 2). The seller’s net benefit from

buying a CDM in market 2 is given by his extra surplus from being in a type-II meeting —as

opposed to a type-I meeting— minus the cost of the CDM plus the dividends i.e. −c (qII) +

V3 (m2,` + zm,s, a2,` + za,s)− [−c (qI) + V3 (m2,` + zm,s, a2,`)] − φε + φD. Let ε∗ be the level of ε

such that the net benefit of acquiring a CDM is zero, i.e.

ε∗ =
−c (qII) + φ (1 + i) za,s + c (qI)

φ (1− σα)

where we have used (30) and linearity of V3. Then, we can state the following

Lemma 3 In market 2:

(1) if ε < ε∗, then α = 1,

(2) if ε > ε∗, then α = 0,

(3) if ε = ε∗, then α ∈ (0, 1) .

Proof. (Statement 1.) Assume ε < ε∗. Then the price of a CDM is smaller than its net benefit,

which means that a seller buys a CDM. In a symmetric equilibrium all sellers buy CDMs,so bonds

are always accepted in market 2 (i.e. α = 1).

(Statement 2.) If ε > ε∗, then the price of a CDM is greater than its net benefit. This implies

that a seller does not buy a CDM in market. In a symmetric equilibrium, nobody acquires a CDM

which means that bonds are illiquid in market 2 (i.e. α = 0).

(Statement 3.) Assume ε = ε∗. Then the price of a CDM equals its net benefit, which means

that a seller is indifferent between buying and not buying a CDM. Hence, in a symmetric equilibrium

each seller randomizes: she buys a CDM with probability α ∈ (0, 1) , in which case she accept bonds

for payment in market 2, she does not buy with probability 1−α, in which case she does not accept

bonds.

The next statement can be established:

Proposition 2 If ε < ε∗, then the equilibrium interest rate is zero and bonds are inessential.

Proof. Assume ε < ε∗. Using Lemma 2 and 3, ε < ε∗ implies α = 1, which implies i = 0.
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If a seller buys a CDM, she will always accept bonds for payment. Thus, in a symmetric

equilibrium, bonds and money have the same liquidity (i.e. α = 1). By (27), this implies that

i = 0, which means that nobody has the incentive to invest in nominal bonds. Namely, if bonds are

perfectly liquid they are inessential. This is a standard result in search-money literature and can be

found in [16].

The next Proposition can now be stated:

Proposition 3 In an economy where bonds and money are competing media of exchange:

(1) if ε > ε∗, then bonds are illiquid, and the equilibrium interest rate is i = u′ (qI) /c′ (qI)− 1,

(2) if ε = ε∗ bonds are partially illiquid, and the equilibrium interest rate is within the interval

R(i, ı̄).

Proof. (Statement 1.) Assume (27) holds. Also, assume ε > ε∗. By Lemma 2 and 3, it follows

that α = 0 and i = u′ (qI) /c′ (qI)− 1.

(Statement 2.) Assume (27) holds, and ε = ε∗. By Lemma 2 and 3, this implies α ∈ (0, 1) and

i ∈ R(i, ı̄).

The underlying idea of Statement 1 can be summarized as follows. A sellers will not buy a

CDM if its price is greater than its net benefit. In a symmetric equilibrium, sellers never accept

bonds for payment in market 2 (since they do not buy CDM) if ε > ε∗. That is, if the price of a

CDM is greater than its benefit, then bonds are illiquid and the nominal interest rate is equal to

i = u′ (qI) /c′ (qI)− 1.

Statement 2 of Proposition 3 has the following meaning. If the price of a CDM equals its net

benefit (i.e. ε = ε∗), then the seller is indifferent between buying and not buying a CDM. In a

symmetric equilibrium, she buys the CDM with probability α ∈ (0, 1) , while she does not buy it

with probability 1 − α. Hence, nominal bond are (partially) accepted for payment in market 2, so

the nominal interest rate must be strictly positive in order to compensate bondholders for the lower

liquidity of bonds (relative to money) if ε = ε∗. In this case, the equilibrium interest rate is within

the interval (0, u′ (qI) /c′ (qI)− 1).

At this point of the analysis we can derive hours of work; details are in the appendix. Hours
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worked in market 3 are

hb = α {x∗ + φm1,+1 + φT − φD}
+(1− α) {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,b} ,

(31)

for buyers, and

h` = ασ
1−σ {x∗ + φm1,+1 + φT − φD − φ (1 + i) (a1,` + za)− φzm + φε}

+ (1−α)σ
1−σ {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,` − φzm}

+1−2σ
1−σ {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,`} ,

(32)

for nonbuyers. Expression (31) means that: (i) with probability α a buyer enters market 3 with

no assets, in which case he has to work x∗ + φm1,+1 + φT − φD hours to consume x∗, bring

m1,+1 amount of money into the next period, and pay taxes T minus the dividend D; (ii) with

probability 1 − α he enters market 3 with zero amount of cash and a1,b bonds, so he has to work

x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,b hours; observe that a1,b bonds automatically turn into

(1 + i) a1,b units of money at the end of market 3, so the buyer who was in a type-I meeting —as

opposed to a type-II meeting— in market 2 has to work less in market 3 to bring the same amount

of cash into the next-period market 1.

Expression (32) refers to a nonbuyer and means that: (i) with probability σα/(1 − σ) she is in

a type-II meeting, which means that she enters market 3 with zm amount of cash and (a1,` + za)

bonds. Consequently, she has to work x∗+φm1,+1+φT −φD−φ (1 + i) (a1,` + za)−φzm+φε hours;

(ii) with probability σ (1− α) /(1−σ) the nonbuyer is in type-I meeting, so she enters market 3 with

zm units of cash and a1,` bonds. Hence, she has to work x∗+φm1,+1 +φT −φD−φ (1 + i) a1,`−φzm

hours; (iii) with probability σ (1− α) /(1 − σ) the nonbuyer is a nontrader in market 2, which

means that she enters market 3 with zero units of money and a1,` bonds. Hence, she has to work

x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,` hours. (Nonbuyers invest all their cash in nominal bonds in

market 1 if the nominal interest rate is strictly positive, so they enter market 3 with at least a1,`

units of bonds if i > 0.)

Using (31) and (32), aggregate hours of work in market 3, H = σhb + (1− σ)h`, are equal to

H = x∗ + φT − φiA, (33)
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by virtue of (30) , m1,+1 = m1 + πM−1 = a2,b + m2,b = M, and using the fact that nonbuyers invest

all their money buying bonds in market 1, i.e. a2,` = m1 + πM−1 = M.

Now, eliminate A from (33) using (2), and impose the symmetric condition x = X to get

H = X∗ (34)

with X∗ satisfying U ′ (X∗) = 1.

5 Conclusions

This paper studied the coexistence of money and bonds by using a framework in which the role of

money is formalized explicitly. We show that money and bonds are competing media of exchange

when they have the same value at the margin, and the equilibrium interest rate depends on the

price of counterfeit detectors.
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Technical appendix

Derivation of V m
2,b, V

a
2,b, V

m
2,` and V a

2,`

To derive V m
2,b, take the differential of (9) with respect to m2,b and get

V m
2,b = α

[
u′ (qII) ∂qII

∂m2b
+ V m

3

(
1− ∂zm,b

∂m2,b

)]

+(1− α)
[
u′ (qI) ∂qI

∂m2b
+ V m

3

(
1− ∂zm,b

∂m2,b

)]
.

(A1)

Since buyers spend all their money in market 2, it holds that ∂zm,b/∂m2b = 1, so

V m
2,b = α

[
u′ (qII)

∂qII

∂m2b

]
+ (1− α)

[
u′ (qI)

∂qI

∂m2b

]
. (A2)

Now, take the differential of (15) and (16) with respect to m2,b and obtain

∂qII

∂m2b
=

φ

c′ (qII)
(A3)

and
∂qI

∂m2b
=

φ

c′ (qI)
, (A4)

respectively. Use (A3) and (A4) to eliminate ∂qII/∂m2b and ∂qI/∂m2b from (A2) , and get

V m
2,b = φ

{
α

u′ (qII)
c′ (qII)

+ (1− α)
u′ (qI)
c′ (qI)

}
. (A5)

Let us now derive V a
2,b. To do so take the differential of (9) with respect to a2,b and obtain

V a
2,b = α

[
u′ (qII) ∂qII

∂a2b
+ V a

3

(
1− ∂za,b

∂m2,b

)]

+(1− α)
[
u′ (qI) ∂qI

∂a2b
+ V a

3

]
.

(A6)

Again, buyers give up all their bond holdings when they trade with an informed seller, so ∂za,b/∂m2,b =

1. Take the differential of (15) with respect to a2,b and get

∂qII

∂a2b
=

(1 + i) φ

c′ (qII)
. (A7)
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Note from (16) that the quantity of goods qI exchanged in a type-I meeting does not depend upon

the buyer’s bond holdings, i.e. ∂qI/∂a2b = 0. Hence, by virtue of (7), expression (A6) can be

rewritten as follows

V a
2,b = φ (1 + i)

{
α

u′ (qII)
c′ (qII)

+ (1− α)
}

. (A8)

To derive V m
2,`, take the differential of (10) with respect to m2,` and get

V m
2,` = σα

1−σ

[
−c′ (qII) ∂qII

∂m2,`
+ V m

3

(
1 + ∂zm,s

∂m2,`

)]

+σ(1−α)
1−σ

[
−c′ (qI) ∂qI

∂m2,`
+ V m

3

(
1 + ∂zm,s

∂m2,`

)]

+1−2σ
1−σ V m

3 .

(A9)

Quantities of goods (qII and qI) produced and the amount of money (zm,s) received by a seller

in a meeting depend on the buyer’s money holdings, and do not depend on the seller’s. Thus, it

holds that ∂qII/∂m2,` = 0, ∂qI/∂m2,` = 0, ∂zm,s/∂m2,` = 0, and (A9) can be rewritten as

V m
2,` = φ (A10)

where (7) has been used.

Let us now derive V a
2,` by taking the differential of (10) with respect to a2,` and get

V a
2,` = σα

1−σ

[
−c′ (qII) ∂qII

∂a2,`
+ V a

3

(
1 + ∂za,s

∂a2,`

)]

+σ(1−α)
1−σ

[
−c′ (qI) ∂qI

∂a2,`
+ V m

3

]

+1−2σ
1−σ V a

3 .

(A11)

Again, terms of trade (qII , qI , za,s) depends on the buyer’s asset holdings, and do not on the seller’s,

i.e. ∂qII/∂a2,` = 0, ∂qI/∂a2,` = 0, ∂za,s/∂a2,` = 0. Again, using (7) , expression (A11) reduces to

V a
2,` = φ (1 + i). (A12)

The marginal values (37)-(40) can be derived on the same lines.
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Derivation of hours of work

Expected hours of work for a buyer are

hb = α {x∗ + φm1,+1 + φT − φD}
+(1− α) {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,b} ,

(A13)

and for a nonbuyer

h` = ασ
1−σ {x∗ + φm1,+1 + φT − φD − φ (1 + i) (a1,` + za)− φzm + φε}

+ (1−α)σ
1−σ {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,` − φzm}

+1−2σ
1−σ {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,`} .

(A14)

So, aggregate hours of works in market 3 are

H = σhb + (1− σ) h` (A15)

which, using (A13)-(A14), can be rewritten as follows

H = σα {x∗ + φm1,+1 + φT − φD}
+σ (1− α) {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,b}
+ασ {x∗ + φm1,+1 + φT − φD − φ (1 + i) (a1,` + za)− φzm + φε}
+σ (1− α) {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,` − φzm}
+(1− 2σ) {x∗ + φm1,+1 + φT − φD − φ (1 + i) a1,`} ,

or, rearranging,

H = x∗ + φm1,+1 + φT − φD − σφ (1− α) (1 + i) a1,b

−σφzm − ασφ (1 + i) za − φ (1− σ) (1 + i) a1,` + φασε.
(A16)

Now, use a1,b = a2,b, a1,` = a2,`, and the fact that constraints in (11) and (12) bind, i.e. zm = m2,b
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and za = a2,b, to rewrite (A16) as follows:

H = x∗ + φm1,+1 + φT − φD − σφ (1 + i) a2,b

−σφm2,b − φ (1− σ) (1 + i) a2,` + φασε,

which is equivalent to

H = αx∗ + φm1,+1 + φT − φD − σφ (a2,b + m2,b)

−σφia2,b − φ (1− σ) (1 + i) a2,` + φασε.
(A17)

Note that ασε = D by (30) , and m1,+1 = a2,b + m2,b = a2,` = M , so (A17) reduces to

H = αx∗ + φT − φi [σa2,b + (1− σ) a2,`]

which is equivalent to

H = αx∗ + φT − φiA (A18)

by virtue of A = σa2,b + (1− σ) a2,`. Hence, using the budget constraint (2) to eliminate A from

(A18) , and imposing symmetric condition x∗ = X∗, aggregate hours of work in the third market

are

H = X∗.
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