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Abstract

We propose a simple method of testing for parameter constancy
in regression models that allow for coe¢ cients that vary smoothly
over time. The model is related to Bierens and Martins (2009) but in
our case we consider stationary processes. The procedure is shown to
have good statistical properties. We revisited Hansen�s (2001) study
of structural breaks in a AR(1) model of labor productivity in the U.S.
manufacturing/durables sector and found evidence of time-varying au-
toregressive parameter.
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1 Introduction

Recently, Clive W. J. Granger, making use of a theorem due to Halbert
White, claimed that �any non-linear model can be approximated by a time-
varying parameter linear model�. In his argument, the time-varying parame-
ter (hereafter TV) �could be a deterministic function of time�, among other
stochastic alternatives (see Granger, 2008, for details). This principle was
implicitly introduced by Bierens and Martins (2009) (henceforth BM) and
Park and Hahn (1999) in TV cointegrated relationships. In BM, the TV
cointegrating vector was approximated by a linear combination of orthogo-
nal Chebyshev time polynomials so that the resulting vector error correction
model had time invariant coe¢ cients. Park and Hahn�s (1999) cointegrating
model is in levels and the approximation is by means of arbitrary orthogo-
nal Fourier functions. In this paper, we follow Halbert White and Granger�s
(2008) principle and model a stable autoregressive process with a TV autore-
gressive coe¢ cient approximated by a combination of Chebyshev polynomi-
als, as in BM. It is shown analytically that, for large samples, least squares
does not su¤er from the collinearity nor the endogeneity issues.
Failure to detect and account for parameter shifts in a model is a serious

form of misspeci�cation. Therefore, several testing procedures for parame-
ter constancy have been proposed in the literature1. When there is a sud-
den single break at an unknown period of time, the most popular statistics
are the "Sup"; suggested by Quandt (1960) and Andrews (1993), and the
"ExpWald" with stronger optimality properties of Andrews and Ploberger
(1994). When it is allowed for more than one sudden unknown break, the
"UDmax " and "WDmax " statistics of Bai and Perron (1998) is a prefer-
able alternative. On the other hand, following the work developed by Nyblom
(1989), who considered time-variation of the form of a martingale process,
Hansen (1992) proposed the "Lc" statistic based on partial sums of the least
squares normal equations. In this study, we propose a standard F�test for
parameter constancy that follows straightforwardly from the suggested re-
gression with Chebyshev polynomials. Contrary to the two above-mentioned
strands of literature, the rejection of the parameter constancy hypothesis in
our testing procedure might indicate evidence for a parameter that varies
smoothly and deterministically over time. According to a limited Monte
Carlo study, the test performs well in �nite samples.

1For comprehensive reviews see Hansen (2001) and Perron (2006).
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We apply our methodology to the U.S. labor productivity data. For
those series for which Hansen (2001) found evidence of structural breaks in
a AR(1) model using the standard tests, we conclude in a similar fashion
but with respect to deterministic TV coe¢ cients. Hence, our AR(1) model
with TV autoregressive coe¢ cient might be a reasonable speci�cation for this
data, giving credit to Clive W. J. Granger�s conjecture. The remainder of
the paper is organized as follows. In Section 2 we introduce the TV AR(1)
model and the test statistic. In Section 3 we study the empirical size and
power properties of the test via Monte Carlo simulations. In Section 4, we
illustrate the merits of our approach by applying the procedures to the U.S.
labor productivity data and we conclude.

2 Testing for Parameter Constancy

In the standard linear regression model yt = x
0
t� + ut; where the observed

time-series
�
yt; x

0
t

�T
t=1
is assumed to be stationary, the k�1 parameter vector

� is time invariant and ut satis�es some functional central limit theorem. We
relax this time-invariance property of � by modeling it as a TV vector �t
according to a deterministic law using Chebyshev time polynomials Pi;T (t) ;
de�ned by

P0;T (t) = 1; Pi;T (t) =
p
2 cos (i� (t� 0:5) =T ) ; (1)

t = 1; 2; :::; T; i = 1; 2; 3; :::

as in BM. The polynomials are orthonormal, in the sense that for all integers
i; j; 1

T

PT
t=1 Pi;T (t)Pj;T (t) = 1 (i = j) ; where 1 (�) is the indicator function.

Due to this orthonormality property, any function of time g (t) ; t = 1; :::; T
can be represented by

g (t) =
T�1X
i=0

�i;TPi;T (t) ; where �i;T =
1

T

TX
t=1

g (t)Pi;T (t) : (2)

Here, g (t) is linearly decomposed in components �i;TPi;T (t) of decreasing
smoothness and may be approximated quite well by

gm (t) =
mX
i=0

�i;TPi;T (t) (3)
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for some relatively small �xed natural number m� T � 1 2:

2.1 Time Varying AR(1) Model

For sake of exposition, we discuss the case of time-variation in the slope of
the �rst-order autoregression:

yt = �+ �tyt�1 + ut; t = 1; :::; T; (4)

where ut � i:i:d: (0; �2u) and j�tj < 1; for all t; so that yt is bounded in
probability. Granger (2008) calls this process �stable (or stationary)� and
distinguishes the strong from the weak form of stability3. Doing backwards
substitution, we get

yt = �

 
1 +

tX
l=0

lY
k=0

�t�k

!
+ y0

t�1Y
k=0

�t�k + ut +
tX
l=1

ut�l

lY
k=1

�t�k+1; (5)

which implies TV unconditional moments with �2t = �
2
t�
2
t�1 + �

2
u; where

V (yt) = �
2
u

 
1 +

t�1X
l=0

lY
k=0

�2t�k

!
� �2t : (6)

With Pi;T (t) spanning an Hilbert space, we may denote �t as �t =PT�1
i=0 �i;TPi;T (t) ; where �i;T =

1
T

PT
t=1 �tPi;T (t) ; i = 0; :::; T � 1; are un-

known scalars. The null hypothesis of parameter constancy is, therefore,
�i;T = 0 for i = 1; :::; T�1; whereas the TV alternative of structural breaks we
consider is such that limT!1 �i;T 6= 0 for some i = 1; :::;m; where m� T �1
is chosen in advance. Substituting �t =

Pm
i=0 �i;TPi;T (t) in (4) yields

yt = �+ �
0
y
(m)
t�1 + vt; t = 1; :::; T; (7)

where �
0
= (�0; �1; :::; �m) 2 <m+1 are now time-invariant coe¢ cients and y

(m)
t�1

is de�ned by y(m)t�1 = PT (t) yt�1; with P
0
T (t) = (1; P1;T (t) ; :::; Pm;T (t)) : The

following Theorem provides a su¢ cient condition for the roots of
�
1� �0PT (t)L

�
lie outside the unit circle for all t:

2See Bierens and Martins (2009), Section 2.2, for technical details.
3In the strong form, j�tj < 1; for all t; whereas in the weak version, j�tj < 1; for all t

such that jYtj > k; where k is some positive number.
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Lemma 1. In model (7), if
Pm

i=0 �
2
i;T <

1
2(m+1)

then
��Pm

i=0 �i;TPi;T (t)
�� < 1;

for all t and a �xed m and T:

Proof : Apply Holders�s inequality to
Pm

i=0

���i;TPi;T (t)�� and note thatPm
i=0 Pi;T (t)

2 is smaller than 2 (m+ 1) ; for all t; for any �xed m and T:

2.2 Testing Procedure

The test for parameter constancy is a standard one and results from trans-
forming the original model (4), with a TV coe¢ cient, to model (7), with
time-invariant coe¢ cients, given the properties of the Chebyshev time poly-
nomials. Under the null hypothesis of slope constancy in the AR(1) model,
�
0
= (�;O1�m) ; so that �

0
y
(m)
t�1 = �yt�1: This suggests estimating model (7)

with least squares and do a right-sided joint signi�cance F�test to �:We de-
note this statistic by Fm;T ; which has a F�distribution, under the null, and
that correspondents to an asymptotic chi-square test procedure.

3 Size and Power Analysis

To conduct the empirical size analysis we applied our Fm;T test to 10,000
replications of the model yt = �+ �yt�1+ut; t = 1; :::; T; where � = 0 and ut
is drawn independently from the standard normal distribution, for various
values of �; T and m: The results are given in Table 1. In each entry, we have
the non-acceptance frequencies based on the F critical values for a size of 5%:
For a matter of comparison, we also computed the size of the tests Lc, SupW ,
ExpW and UDmax. The SupW test under-rejects the null hypothesis and
the UDmax performs poorly in terms of size.
The Fm;T test tends to over-accept the hypothesis of parameter constancy,

specially for large values of m: The intuition is the following. For T �xed, it
can be easily shown that Fm;T =

�
SSRR
SSRUR

� 1
� �

T�1
m
� 1
�
; where4

1

T
SSRUR =

mX
i=0

b�2i 1T
TX
t=2

Pi;T (t)
2 y2t�1�2

mX
i=0

b�i 1T
TX
t=2

Pi;T (t) yt�1ut+
1

T

TX
t=2

u2t :

(8)

4SSRR does not depend on m and we assume � = 0 without loss of generality.
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Table 1: Empirical Size Analysis
m �nT 50 100 200
1 �0:25 0:037 0:044 0:047

0 0:038 0:044 0:047
0:25 0:037 0:045 0:049
0:75 0:036 0:044 0:046

T=10 �0:25 0:017 0:015 0:010
0 0:017 0:015 0:009
0:25 0:016 0:014 0:009
0:75 0:026 0:023 0:022

T=5 �0:25 0:008 0:003 0:001
0 0:007 0:002 0:001
0:25 0:009 0:004 0:001
0:75 0:025 0:019 0:014

T=2 �0:25 0:007 0:002 0:000
0 0:007 0:003 0:000
0:25 0:008 0:003 0:000
0:75 0:012 0:009 0:004

�nT 50 100 200
Lc �0:25 0:043 0:046 0:044

0 0:042 0:047 0:047
0:25 0:042 0:047 0:048
0:75 0:032 0:036 0:041

SupW �0:25 0:014 0:020 0:029
0 0:014 0:020 0:029
0:25 0:014 0:020 0:031
0:75 0:020 0:028 0:037

ExpW �0:25 0:027 0:033 0:040
0 0:026 0:033 0:040
0:25 0:027 0:033 0:043
0:75 0:031 0:036 0:042

UDmax �0:25 0:616 0:128 0:023
0 0:618 0:123 0:019
0:25 0:620 0:125 0:022
0:75 0:618 0:156 0:034
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Table 2: Empirical Power Analysis
m T 50 100 200
1 M1 0:993 1:000 1:000

M2 0:780 0:994 1:000
T=10 M1 0:964 0:999 1:000

M2 1:000 1:000 1:000
T=5 M1 0:902 0:997 1:000

M2 1:000 1:000 1:000
T=2 M1 0:639 0:938 0:998

M2 1:000 1:000 1:000

T 50 100 200
Lc M1 0:987 1:000 1:000

M2 0:071 0:003 0:000
SupW M1 0:972 1:000 1:000

M2 1:000 1:000 1:000
ExpW M1 0:989 1:000 1:000

M2 1:000 1:000 1:000
UDmax M1 0:972 0:999 1:000

M2 1:000 1:000 1:000

This quantity will increase with m because the second term is approximately
zero as it is a weighted sample covariance of yt�1 and ut: Hence, for T �xed,
the simulation results suggest that for larger m the statistic Fm;T decreases
at a faster rate than the 5% critical value from the Fm;T�m�1 distribution.
For practitioners, the results suggest applying the Fm;T test with a relatively
small m (This phenomenon is also described at BM.)
Next, we check via a limited Monte Carlo study how the tests perform

under TV AR(1) speci�cations. In Model 1 (M1), � (t=T ) is a S-shaped
function on [0; 1]; � (x) = 6x2 � 4x3 � 1: In M2, � (t=T ) is a combination of
Fourier functions, � (x) = x+x2+cos(2�x)+ sin(2�x)+cos(4�x)+ sin(4�x)
in which � (x) is non-monotonic and is not inside the [0; 1] interval for x close
to zero and one. The results are in Table 2 and, in general, the tests perform
very well. The exception is Lc in Model 2.

4 Application and Discussion

In his 2001 paper, Bruce Hansen found strong evidence of structural breaks
in a AR(1) model of labor productivity in the U.S. manufacturing/durables
sector. Using monthly data from February 1947 through April 2001 and
the standard parameter constancy tests named above, he found support for
structural change in the stationary AR(1) regression for seven of the ten
two-digit SIC industries of the manufacturing/durables group: Industry ma-
chinery (SIC 35) and Electronic equipment (SIC 36) at the mean growth
rate, �

1�� ; Furniture (SIC 25), Primary metals (SIC 33), Fabricated metals
(SIC 34), Instruments (SIC 38) and Miscellaneous (SIC 39) at �: Parameter
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Table 3: Fm;T Tests for Parameter Constancy: p-values
m = 1 m = 2 m = 3 m = 4 m = 5

SIC 24 0:938 0:731 0:488 0:628 0:396
SIC 25 0:002 0:000 0:002 0:000 0:000
SIC 32 0:259 0:465 0:199 0:229 0:344
SIC 33 0:190 0:004 0:001 0:000 0:000
SIC 34 0:027 0:087 0:165 0:086 0:148
SIC 35 0:071 0:002 0:000 0:000 0:000
SIC 36 0:000 0:000 0:000 0:000 0:000
SIC 37 0:088 0:226 0:239 0:377 0:519
SIC 38 0:000 0:000 0:000 0:000 0:000
SIC 39 0:000 0:000 0:000 0:000 0:000

constancy of found for Lumber (SIC 24), Stone, clay and glass products (SIC
32) and Transportation equipment (SIC 37) (see Hansen, 2001, for details).
For the same dataset, we extend Hansen�s study by modeling the variables
according to our TV AR(1) model (7) and testing for parameter constancy by
means of our Fm;T statistic. The p-values of the tests are presented in Table
3. Small values for m were chosen due to the empirical size and power prop-
erties of the test, according to the Monte Carlo experiments in the previous
section.
Our results con�rm those by Hansen (2001). Whenever the standard

tests �nd evidence for parameter constancy so does our Fm;T test. The cases
of structural changes are also identi�ed by our test procedure. We also
computed the time-sequence b�t (m) =Pm

i=0
b�i;TPi;T (t) ; t = 1; :::; T as a way

to model series with TV autoregressive parameter according to (7). For the
series for which Bruce Hansen found evidence for breaks at the mean growth
rate, we observed that b�t (m) tended to increase slightly with time. For the
cases of changes at �; the sequence b�t (m) tended to decrease at a faster rate.
To illustrate, we present the sequence b�t (m) for SIC 38 for m = 1; 3 and 5
at Figure 1. In this case, the curve b�t (m) is very similar for di¤erent m and
it drops from 0:15 at the beginning of the sample to �0:4 at the end of the
sample5: With this empirical application we show that our model (7) can be

5The su¢ cient condition
Pm

i=0 �
2
i;T <

1
2(m+1) is satis�ed, when �

2
i;T is replaced by its

estimate b�2i;T :
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suitable for some time-series and that the Fm;T test is a valid alternative to
the standard tests for parameter constancy.

Figure 1. Sequence b�t (m) for SIC 38.
Finally, we discuss the issues of (possible) colinearity and endogeneity in

model (7). The following Theorem makes proof that there is no colinearity
problem in the testing regression (7) for large samples.

Lemma 2. Let

aij =

Z 1

0

[(i�) sin(i�x) cos(j�x) + (j�) sin(j�x) cos(i�x)]xdx;

for i; j = 0; 1; 2; :::: Then,

aij =

8<:
�1 for i+ j and i� j even
1 for i+ j and i� j odd ; i 6= j

�1
2
for i = j 6= 0

:

Theorem 1. For sake of simplicity, let � = 0 in model (7) and denote

X
0 �

�
y
(m)
1 ; :::; y

(m)
T�1

�
: If

Pm
i=0 �

2
i;T <

1
2(m+1)

then 1
T

�
X

0
X
� p! �2Im+1; as

T !1; where �2 = lim
T!1

1
T

PT
t=1 V (yt�1) and Im+1 is the identity matrix.
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Proof : Let 1
T

PT
t=2 Pi;T (t)Pj;T (t) y

2
t�1; i; j = 0; 1; :::;m be a generic ele-

ment of the matrix 1
T

�
X

0
X
�
: By Bierens (1994), Lemma 9.6.3., page 200,

McLeish (1974, 1975) and Lemma 1,

1

T

TX
t=2

Pi;T (t)Pj;T (t) y
2
t�1 =

1

T

TX
t=1

Pi;T (t)Pj;T (t) y
2
t + op (1)

= (�1)i+j 1
T

TX
t=1

y2t�1 +

Z 1

0

[(i�) sin(i�x) cos(j�x) + (j�) sin(j�x) cos(i�x)]
[xT ]

T

1

[xT ]

[xT ]X
t=1

y2t�1dx

+op (1)

p!
�
(�1)i+j + aij

�
lim
T!1

1

T

TX
t=1

V (yt�1) ; as T !1:

By Lemma 2,

1

T

TX
t=2

Pi;T (t)Pj;T (t) y
2
t�1

p!
(

0; i 6= j
1
2
lim
T!1

1
T

PT
t=1 V (yt�1) ; i = j 6= 0

;

as T !1; and the result follows.

In terms of endogeneity, the question is whether the polynomial approxi-
mationm� T�1 generates an error term that is correlated to the regressors.
According to Theorem 2, endogeneity is not an issue either in the testing re-
gression (7) for large samples.

Theorem 2. Let vt = ut +
PT�1

i=m+1 �iPi;T (t) yt�1 in model (7) and denote

X
0 �

�
y
(m)
1 ; :::; y

(m)
T�1

�
: If

Pm
i=0 �

2
i;T <

1
2(m+1)

then 1
T

�
X

0
v
� p! 0; as T !1:

Proof : Due to the ortonormality property of the Chebyshev time poly-
nomials, model (4) is, in fact, yt = � + �

0
y
(m)
t�1 + vt; where vt = ut +PT�1

i=m+1 �iPi;T (t) yt�1: By the properties of ut; endogeneity in model (7), if it
exists, is via Pi;T (t) yt�1; i = m+ 1; :::; T � 1: Apart from an op (1) term, letPT�1

i=m+1 �i
1
T

PT
t=2 Pi;T (t)Pj;T (t) y

2
t ; j = 0; 1; :::;m denote a generic element of
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the matrix 1
T

�
X

0
v
�
: By Bierens (1994), McLeish (1974, 1975) and Lemma 2

(note that i 6= j; in this case),
T�1X
i=m+1

�i
1

T

TX
t=2

Pi;T (t)Pj;T (t) y
2
t

p! 0; as T !1;

and the result follows.

In conclusion, we claim that our model (7) is a valid speci�cation for
stationary time-series that are well characterized by an AR(1) model with
TV autoregressive coe¢ cient. The least squares estimation procedure has
good statistical properties due to the orthonormality property of the Cheby-
shev time polynomials. Moreover, the corresponding Fm;T test statistic is
a reliable alternative to the standard tests for parameter constancy. The
Chebyshev time polynomials is not the only way to model the TV autore-
gressive coe¢ cient. For instance, one may use as well the orthogonal Fourier
functions suggested by Park and Hahn (1999).
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