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Abstract

We conduct experiments testing the relationship between excess capacity and pricing in Bertrand-

Edgeworth duopolies and triopolies. We systematically vary the experimental markets between

small amount of excess capacity (suggesting monopoly) and no capacity constraints (suggesting

perfect competition). Controlling for the number of firms, higher production capacity leads to

lower prices. However, the decline in prices as industry capacity rises is less pronounced than

predicted by Nash equilibrium, and a model of myopic price adjustments has greater predictive

power. With higher capacities, Edgeworth-cycle behavior becomes less pronounced, causing

lower prices. Evidence for collusion is limited and restricted to low-capacity duopolies.
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1 Introduction

The Bertrand-Edgeworth model of price-setting firms which operate under capacity constraints

(Edgeworth, 1925) is one of the core oligopoly theories. It addresses the intermediate range be-

tween uncontested monopoly and perfect competition which is crucial for research in theoretical

industrial organization by varying firms’ capacities. If capacities are sufficiently small, competition

is ineffective and firms charge the monopoly price; whereas, if capacities are not binding, per-

fect competition emerges. In this way, the model generates market outcomes between monopoly

and marginal-cost pricing thought to be intuitive for oligopoly. This is Edgeworth’s (1925) main

competitive advantage to Bertrand’s (1883) approach which is often dismissed as a paradox.

A central feature of Bertrand-Edgeworth oligopoly is that there is no static Nash equilibrium

in pure strategies. Instead, there is a mixed-strategy equilibrium which predicts that firms charge

prices above marginal cost but below the monopoly level, and averages prices are predicted to

decline with capacity. (See, for example, the early references by Beckmann, 1965, and Levitan

and Shubik, 1972). At its boundaries, the model exhibits discontinuities in that the nature of

equilibrium changes. Once capacities are not binding any more, the Nash equilibrium is in pure

strategies and prices are equal to marginal cost. Similarly, if there is no excess capacity at all,

pure-strategy pricing at the monopoly level is the equilibrium.

In this paper, we provide a comparative-statics analysis of excess capacity in experimental

Bertrand-Edgeworth markets. We run experiments with several levels of capacities, addressing the

whole range of capacities between monopoly and perfect competition. Our experiments are thus

suitable to shed light on the discontinuities just mentioned. We run two series of treatments as we

consider both duopoly and triopoly markets.

The seminal reference analyzing experimental Bertrand-Edgeworth markets is Brown-Kruse
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et al. (1994).1 They analyze four-firm markets and vary both the information available to the

participants and the level of industry capacity. Out setup differs from the one in Brown-Kruse

et al. (1994) in several dimensions. They analyze three levels of industry capacity, but even for

the largest level of capacity, marginal cost pricing is not a Nash equilibrium in their experiments.

We run many capacity levels and we also include treatments where the (pure strategy) Bertrand

outcome is the Nash equilibrium. Capacity levels in Brown-Kruse et al. (1994) are relatively high,

and monopoly pricing is presumably difficult to achieve for participants: there are four sellers, but

tacit collusion is known to occur in experiments usually only with two or three firms (Isaac and

Reynolds, 2002; Huck et al., 2004). Only 9 to 13 percent of industry capacity are utilized at the

monopoly price, and a relatively high discount factors of 0.78 would be required to sustain collusion

in the infinitely repeated game. We consider fewer firms, the monopoly price is presumably more

focal and we also employ treatments where excess capacity is relatively small (86 percent of capacity

is used at the monopoly price, the minimum discount factor is one half or less). While differences

in the demand schedule prevent a direct comparison of our results to those of Brown-Kruse et al.

(1994), our analysis should complement theirs in that we consider a richer set of capacities and

vary the number of firms.2

1Following Dufwenberg and Gneezy’s (2001) introduction of a simplified Bertrand-Edgeworth setting (which boils

down to a Bertrand-Edgeworth setting with inelastic demand and one buyer), there has been a growing number of

Bertrand-Edgeworth experiments. See, for example, Dufwenberg et al. (2007); Apesteguia et al. (2007); Abbinks

and Brandts (2007); Hinloopen and Soetevent (2008); Brandts and Guillén (2004) study homogenous goods markets

in which firms specify capacity and then select a price.
2Related to Bertrand-Edgeworth oligopoly are posted-offer markets (see e.g., Plott and Smith, 1978, or Ketcham,

Smith and Williams, 1984). Posted-offer markets differ to Bertrand-Edgeworth markets in that, first, information

is incomplete (sellers know only their own cost schedule) and, second, sellers have to choose a maximum number of

units they wish to sell. As noted by Brown-Kruse et al. (1994, p. 344), most posted-offer markets do not address the

excess capacity issue.
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Brown-Kruse et al. (1994) test the predictive power of various theories of price competition:

Competitive pricing, mixed-strategy pricing, tacit collusion and Edgeworth cycle behavior. Their

main finding is that all of these theories help to explain the data. However, if a single theory were to

be chosen to rationalize the data, Edgeworth-cycle theory would perform best. Edgeworth (1925,

p. 116) had already argued that firms will engage in cyclic behavior. Firms will undercut each

other’s prices but undercutting a rival’s price is only worthwhile up to a certain price level. Once

this level has been reached, firms prefer jumping back to the monopoly price. Eventually, firms will

arrive at the prices vector from which they started and have thus completed an (Edgeworth) cycle.

Brown-Kruse et al. (1994) find strong evidence for such cyclical behavior, as do some posted-offer

experiments (see, for example, Plott and Smith, 1978; Ketcham, Smith and Williams, 1984; Davis,

Holt and Villamil, 2002).3

Our basic results confirm those in Brown-Kruse et al. (1994). We find that average prices

decrease as excess capacity goes up. While this is consistent with the static Nash equilibrium,

the data are better explained by Edgeworth-cycle behavior. Not only are average weighted prices

closer to the predicted Edgeworth cycle prices, but we cannot reject the hypothesis that firms are

engaging in some form of myopic price adjustment. There is little tacit collusion.

The additional insights from our study are that the significance and the strength of these

results depend on the capacity levels. First, we find that the predictive power of the static Nash

equilibrium varies with industry capacities. Specifically, the gap between Nash predictions and

observed average prices significantly increases alongside the level of excess capacity. Second, also

the explanatory power of the model of myopic price adjustments depends on the capacity level.

The Edgeworth price adjustment process is stronger for treatments with lower production capac-
3See also the recent related studies on price dispersion by Morgan et al. 2006 and Orzen (2008) where the equi-

librium is also in mixed strategies.
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ities. As capacities become bigger and eventually not binding, the intensity of Edgeworth-cycle

behavior diminishes substantially. Regarding monopoly pricing, we observe that it is significantly

and negatively correlated with industry capacity. When capacities are “small” and approach the

monopoly level, a share of prices is indeed at the monopoly level.

Our data are also suitable to illuminate the discontinuities of the Bertrand-Edgeworth model

to perfect competition and monopoly. While the intensity of Edgeworth cycles decreases with

capacity, even in the case were capacities are such that marginal cost pricing is the pure-strategy

equilibrium, Edgeworth-cycle theory still describes pricing behavior rather accurately. That is,

even though in theory the Nash equilibrium regime changes from mixed to pure-strategy, we find

no corresponding discontinuity in behavior in the experiment. A similar point applies to monopoly

pricing. Even for the lowest level of capacity we study, the share of monopoly prices does not

exceed 31 percent and, again, much of the data still exhibits cyclical patters.

Finally, our results add to the existing literature concerned with the effect of the number of

competitors on market outcomes. Three findings merit note; firstly and consistent with the existing

literature, increasing the number of firms keeping production capacity constant leads to lower

market prices. Secondly, the extent to which prices are autocorrelated diminishes with triopolies

vis-à-vis duopolies. Furthermore, the extent to which firms engage in Edgeworth cycles is lower

in markets with three firms than in markets with two firms. Finally, we observe a drop in the

frequency of monopoly pricing when we move from duopolies to triopolies. While there is some

attempts at collusive behavior in two-firm markets, we find no such evidence in markets with three

competitors.

The following section describes the model under scrutiny. Section 3 describes the experimen-

tal design and methodology; section 4 analyzes the results and section 5 concludes the paper.
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2 The Model

We consider a symmetric Bertrand-Edgeworth oligopoly with n firms. Denote by k a firm’s capacity

such that nk is industry capacity and (n − 1)k is the capacity of a firm’s competitors. Firms’

production costs up to capacity are assumed to be zero for simplicity.

There are m buyers, each of whom buys one unit of the good as long as the price does not

exceed p. Buyers buy from the firm with the lowest price first. If this firm’s capacity is exhausted,

they move on to the second lowest price and so on. If two or more firms charge the same price and

if their joint capacity exceeds the (remaining) number of customers, demand is split equally among

firms.

We assume

nk > m > (n− 1)k. (1)

These assumptions imply that there is competition, but it is not perfect and static Nash equilibrium

profits will be positive. If m > nk, all firms would charge the maximum price of p and there would

not be any competition at all. If (n−1)k > m, any subset of n−1 firms can serve the entire market

so there would be perfect Bertrand competition where price equals marginal cost in equilibrium.

Since m > (n−1)k, equation (1) ensures the static Nash equilibrium is in mixed strategies. Due to

the assumption, only two relevant contingencies exist for each firm. If a firm does not charge the

highest price, it sells k units. If a does firm charge the highest price, it sells m− (n− 1)k units.

2.1 Equilibrium Analysis

In this section, we derive the static Nash equilibrium, the minimum discount factor required for

collusion in the repeated game and a prediction for markets characterized by myopic Edgeworth-

cycle behavior. The proofs of the following three propositions ca be found in the appendix.
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Proposition 1. The unique static Nash equilibrium is in mixed strategies with support [p, p] where

p = p(m− (n− 1)k)/k. In equilibrium, the probability that a firm charges a price of no more than

p is

(
p (m− (n− 1)k)− pk

p(m− nk)

)1/(n−1)

(2)

Equilibrium profits are πN = pk = p(m − (n − 1)k) and the expected capacity-weighted Nash

equilibrium price is pN = pkn/m.

This is the standard result for Bertrand-Edgeworth oligopolies with inelastic demand. Firms

randomize in equilibrium and choose prices between the reservation price and some lower bound

that depends on the excess capacity. Nash equilibrium profits and average prices vary between the

monopoly level (for nk = m) and the perfectly competitive level (for k = m).

We now turn to the infinitely repeated game. Time is indexed from t = 0, ...,∞ and firms

discount future profits with a factor δ, where 0 ≤ δ < 1. We will look for subgame perfect

collusive equilibria with profits higher than those of the static Nash equilibrium. When analyzing

the repeated game, denote by πc
i the profit firm i earns when all firms adhere to collusion. Let πd

i

denote the profit when a firm defects, and πp
i is the profit per period when a punishment path is

triggered. We assume that firms revert to the static Nash equilibrium after a defection, thus we

have πp
i = πN

i .4

Proposition 2. The minimum discount factor required for collusion in the infinitely repeated game

is δ = 1/n.

The proposition shows that the minimum discount factor depends only on the number of

firms but not on k. This is due to the symmetry of the model. Indeed, it is our aim to control
4Note that the static Nash equilibrium payoff is equal to the minimax payoff here. Thus, harsher punishments do

not exist.
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for δ given industry capacity, kn, because otherwise, we would change both capacities and δ in the

experiments.

The proof of the proposition shows that colluding at the reservation price p requires the

lowest discount factor. Thus, while the folk theorem says that infinitely many outcomes can be a

subgame perfect equilibrium of this game, both payoff dominance and the minimum discount factor

suggest that players may coordinate on p.

Finally, we consider Edgeworth-cycle behavior. The idea is that, in multi-period Bertrand-

Edgeworth markets, firms may dynamically adjust their prices by best responding, assuming that

the other firms keep their prices constant. Firms keep undercutting their rivals’ prices until they

reach a price level (which coincides with the lower bound of the support of the mixed-strategy

equilibrium, p) where they are better off charging the reservation price even if they do not sell their

capacity at that price. In other words, in an Edgeworth cycle firms play the myopic best reply,

holding naive price expectations.

As all firms which do not charge the highest price in the market sell k, the myopic best reply

is to undercut by the smallest amount (one here for illustration) the rival firm that charged the

highest price in the previous period. Formally

pt+1
i =





max{pt
j 6=i} − 1, if max{pt

j 6=i} − 1 ≥ p

p else
. (3)

These kind of myopic price choices suggest the following proposition.

Proposition 3. Edgeworth-cycle pricing behavior implies an average price of (p + p)/2.

Proposition 3 is intuitive. If firms play a complete Edgeworth cycle, they charge each of the

prices in [p − p] exactly once. Thus the average price is the mean of p and p where p is an in

Proposition 1.
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Neither Proposition 1 nor Proposition 3 do apply when m < (n− 1)k (see (1)). In that case,

capacity constraints are not binding any more and the pure strategy Nash equilibrium is where price

equals marginal cost. As firms to do not strictly gain when price equals marginal cost, starting a

new Edgeworth cycle does not improve profits either. However, we note already here that, since

firms make zero profits when price equals marginal cost, charging p does not reduce profits either.

For that reason (and this is supported by the data), we will apply the prediction in Proposition 3

also in the treatments where m < (n− 1)k.

3 Experimental Design and Procedures

In order to tackle our research question, we ran a series of experimental Bertrand-Edgeworth

markets. In all treatments, there were m = 300 computer simulated consumers, who demanded

one unit of a good at the lowest price, as long as that price did not exceed p = 100. The main

treatment variable is industry production capacity, which was always symmetrically distributed,

and the number of firms in the market (two or three). The choice of capacity distributions was

made such that we had treatments in which the static prediction was perfect competition, all the

way to a distribution close to point where firms had monopoly power. Table 1 summarizes the

treatments. We also ran as an extra control treatment a variant of treatment 250-250, where firms

had a fixed production cost. We elaborate more on this treatment in the analysis section.

n = 2 treatment 175-175 201-201 225-225 250-250 300-300
K 350 402 450 500 600

n = 3 treatment 116-116-116 134-134-134 150-150-150
K 348 402 450

Table 1: Treatments

We implemented the treatments with a fixed-matching scheme, and generated six markets

(or groups) for each treatment. Subjects were told they were representing a firm in a market where
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they would meet with one (or two) other firms. Subjects participated in one treatment only and

the capacity distribution was held fixed in each market, meaning that each subject dealt with

one capacity only. Subjects were informed about all features of the market in the trading rules

(instructions are reproduced in the Appendix).

Sessions lasted for at least 30 periods. From the 31st period on, a random stopping rule was

imposed with a continuation probability of 5/6. Subjects were fully informed about the minimum

number of periods and the details of the termination rule. In each period, subjects were asked to

enter their price in a computer terminal. Once all subjects had made their decisions, the round

ended and a screen displayed the prices chosen by all firms in the market, as well as the profit of

each individual firm. Finally subjects were told their accumulated profit up to that point.

Payments consisted of a show-up fee of £5 plus the sum of the profits over the course of the

experiment. For payments, we used an “Experimental Currency Unit (ECU)”. In all treatments,

25,000 ECU were worth £1.

The sessions were run in the F.E.E.L.E. lab at the University of Exeter during the Spring of

2008. The experiment was programmed in z-Tree (Fischbacher, 2007). Sessions lasted for about

60 minutes and average payment was £17 (roughly $31). We conducted two experimental sessions

with nine participants for each of the three-firm markets and one session with twelve participants

for each of the duopoly markets. The data for treatments 201-201 and 134-134-134 are taken from

Fonseca and Normann (2008). These sessions were run by the same experimenter and using the

same protocol at the Economics Experiments Laboratory of Royal Holloway College (University

of London) during the Fall of 2004 and 2005. We have a total of 96 subjects participating in the

Exeter sessions plus 30 subjects who participated in the 201-201 and 134-134-134 treatments at

Royal Holloway College.
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Prediction
Treatment K δ pEC pN p

175-175 350 0.5 85.71 83.33 84.96
(9.70)

201-201 402 0.5 75.63 66.00 78.44
(11.93)

225-225 450 0.5 66.67 50.00 60.50
(19.57)

250-250 500 0.5 60.00 33.00 54.04
(23.62)

250-250-FC 500 0.5 60.00 33.00 47.62
(21.79)

300-300 600 0.5 50.00 0.00 40.48
(22.20)

116-116-116 348 0.33 79.63 68.00 73.51
(9.46)

134-134-134 402 0.33 61.94 32.00 64.69
(20.19)

150-150-150 450 0.33 50.00 0.00 41.73
(18.10)

Table 2: Predicted and observed average weighted prices.

4 The Results

4.1 Overview

Throughout, we consider data from period 11 onwards to allow for learning effects. Using the full

data set would not alter the qualitative results. Table 2 displays weighted average price for each

treatment. The average prices of the treatments clearly differ. Counting each group average as one

observation, a non-parametric Kruskal-Wallis test on the duopoly data (excluding the 250-250-FC

data) is highly significant (χ2 = 20.97, d.f. = 5, p = 0.0008), as is the same test on the three-firm

markets (χ2 = 8.84, d.f. = 2, p = 0.0120).

Table 2 suggests that industry capacity and prices are negatively correlated. The Spearman

correlation coefficient is quantitatively substantial and significant for both the duopolies (ρ = −0.75,

p < 0.0001) and the three-firm markets (ρ = −0.71, p = 0.0010). If we compare treatments

pairwise, we find that a rise in capacity almost always results in significantly lower prices – the
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exceptions being the comparisons between treatments 175-175 and 201-201, as well as 116-116-116

and 134-134-134 (two-tailed Mann-Whitney U test, p < 0.05).

4.2 Analysis of the Nash equilibrium prediction

The negative correlation of average prices is predicted by the static Nash equilibrium. So, qual-

itatively, the Nash prediction is consistent with this trend. It is, however, clear that the Nash

equilibrium does not do well in terms of the quantitative prediction. The rate of decrease in prices

is less pronounced compared to what the mixed-strategy equilibrium predicts. It seems that, as

excess capacity increases, the difference between predicted Nash prices and average weighted prices

also goes up. Figure 1 shows the average market price for each capacity, as well as the predicted

Nash price and Edgeworth cycle price. Indeed, a rank-sum test using the difference between the

average price for each market and the Nash prediction confirms that this gap significantly increases

with industry capacity for both duopolies (J-T statistic 4.017, p < 0.001) and three-firm markets

(J-T statistic 3.719, p < 0.001).

Since the static Nash equilibrium of this game is in mixed strategies, it is desirable to look

at the distribution of posted prices in each treatment and compare it to the predicted mixed

strategy distribution. Figures 2 and 3 display the predicted and observed price distributions for

the duopoly and triopoly markets, respectively. As is readily observable from the figures, all the

observed data distributions significantly differ from their theoretical counterparts at the 1% level

using Kolgomorov-Smirnov tests. This is consistent with evidence from Brown-Kruse et al. (1994)

and Fonseca and Normann (2008), who reported significant differences between predicted mixed

strategy distributions and observed price distributions.

An alternative interpretation of Nash behavior in this context is that subjects make in every

period an independent draw with replacement from the mixed strategy equilibrium distribution of
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Figure 1: Group average prices for the duopolies (left) and triopolies (right). The squares are the
Edgeworth-cycle prediction, the triangles are the Nash equilibrium prediction and the solid dots
are the treatment average.

0 50 100
0

0.2

0.4

0.6

0.8

1

p

F
(p

)

175−175

40 60 80 100
0

0.2

0.4

0.6

0.8

1

p

F
(p

)

201−201

0 50 100
0

0.2

0.4

0.6

0.8

1

p

F
(p

)
225−225

0 50 100
0

0.2

0.4

0.6

0.8

1

p

F
(p

)

250−250

0 50 100
0

0.2

0.4

0.6

0.8

1

p

F
(p

)

250−250−FC

0 50 100
0

0.2

0.4

0.6

0.8

1

p

F
(p

)

300−300

Figure 2: Predicted (dotted line) and observed cumulative price distributions, duopoly treatments
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Figure 3: Predicted (dotted line) and observed cumulative price distributions, triopoly treatments

(Pt − Pt−1) (175-175) (201-201) (225-225) (250-250) (300-300) All
(Pt−1 − Pt−2) -0.571** -0.560** -0.431** -0.384** -0.289** -0.418**

(0.039) (0.073) (0.038) (0.037) (0.061) (0.035)

Perinv -5.416 35.535 -10.575 6.059 -95.486 -13.697
(28.311) (14.642) (28.130) (50.526) (41.069) (16.444)

Const 0.747 -1.929* 0.400 0.122 4.293 0.693
(1.420) (0.508) (0.951) (2.012) (1.905) (0.716)

N 240 396 384 348 312 1584
R-squared 0.33 0.31 0.18 0.14 0.09 0.17

Table 3: Autocorrelation of prices: duopolies

prices, F (p). As such, one would expect there to be no correlation between current and previous

prices. To test this hypothesis, we regressed the difference between the price posted by firm i at

time t and the price posted by the same firm at time t − 1 on its lag plus a variable equal to the

inverse of the period (Perinv) number to allow for time trends. We find that the coefficient on

the lag of the regressor gets smaller as total capacity increases. This effect is significant for the

duopolies (J-T statistic = 3.505, p < 0.001) but not significantly for triopolies (J-T statistic =

0.970, p = 0.166. This indicates that the degree to which prices are autocorrelated diminishes with

excess capacity and with the number of firms.

To conclude, the static mixed-strategy equilibrium captures the negative correlation between

average prices and industry capacity well. On the other hand, it is obvious that subjects do not
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(Pt − Pt−1) (116-116-116) (134-134-134) (150-150-150) All
(Pt−1 − Pt−2) -0.348** -0.213** -0.223** -0.237**

(0.063) (0.065) (0.038) (0.031)

Perinv -7.614 51.805 -30.729 -3.329
(28.669) (43.757) (44.318) (22.809)

Const 0.254 -2.554 1.860 -0.057
(1.538) (2.259) (2.536) (1.233)

N 414 360 396 1170
R-squared 0.12 0.05 0.05 0.06

Table 4: Autocorrelation of prices: triopolies

randomize in the way the theory stipulates. Central for our research question is the finding that,

with higher capacities, the gap between the Nash prediction and average prices gets bigger.

4.3 Tacit Collusion

We now address the issue of collusion. As one can see in Figures 2 and 3, there is some mass on the

reservation price in all treatments. As discussed in the theory section, while many possible prices

may sustain collusion in equilibrium, the maximum price, p is the natural candidate, both because

it is payoff dominant and also because it requires the smallest discount factor.5 When looking at

the aggregate data across treatments we find some limited evidence of collusion. 13% of posted

prices are equal to 100 in the duopoly treatments and 5% in the triopoly condition. When we look

at the proportion of cases where all subjects posted p = 100 in a given period, the percentage drops

to 3% in the duopoly conditions and 0% in the triopoly conditions.

However, these averages mask the variation that exists across different capacity configura-

tions. We find that in the duopoly case, the share of p = 100 prices goes significantly up as total

capacity goes down. Using each market as one independent observation, the Spearman correlation

between share of p = 100 and capacity is high and significant (ρ = −0.51, p = 0.004); using a
5It is worth noting that neither the static mixed strategy Nash equilibrium nor the Edgeworth cycle predict price

distributions with any mass at p = 100.
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Treatment p = 100 all firms pt = 100
175-175 0.31 0.16
201-201 0.10 0.01
225-225 0.13 0.02
250-250 0.12 0.02
300-300 0.04 0.01
Total 0.13 0.03

116-116-116 0.05 0.00
134-134-134 0.05 0.00
150-150-150 0.05 0.00

Total 0.05 0.00

Table 5: Relative frequency of collusion

Jonckheere-Terpstra test we can reject the hypothesis that shares of p = 100 is constant across

treatments in favor of the alternative that it rises as total capacity drops (J-T statistic = -2.85,

p = 0.004).

When we turn to the triopoly data, we find very little evidence of collusion. The relative

frequency of p = 100 is constant at 5% across all treatments, and the relative frequency of three

firms simultaneously posting prices equal to 100 is zero. We can reject therefore any relationship

between capacity and share of p = 100 prices using either test Spearman’s ρ = 0.01, p = 0.958; J-T

statistic = 0, p = 0.999). Previous studies of Bertrand markets (Dufwenberg and Gneezy, 2001)

found that the degree of competition increased dramatically when the number of firms went from

two to three (and four). In their paper, firms were able to serve the entire market. Our evidence

suggests that even when capacities are binding, such that no firm is able to serve all consumers,

cooperation is too difficult to sustain as one moves beyond a simple duopoly. Table 5 summarizes

the results.

A possible explanation for the high frequency of p = 100 observations is that subjects may

have attempted to signal the intention to collude by repeatedly posting the maximum price over a

number of periods, even when such actions are not corresponded by the other subjects. We found

that about half of all p = 100 observations are consistent with (failed) attempts to signal collusion
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intentions.

4.4 Analysis of the EC prediction

Brown-Kruse et al. (1994) suggest that subjects’ behavior may be consistent with Edgeworth cycles.

Table 2 confirms this. Figure 1 suggests that, at least at the aggregate level, Edgeworth cycles are

a much better predictor of behavior than the Nash equilibrium in both the duopoly and triopoly

conditions.

In order to construct a formal test of Edgeworth cycle pricing, we follow Brown-Kruse et al.

(1994) in running OLS estimations of individual price adjustments across periods in all treatments.

We estimated the following equation: Pi,t−Pi,t−1 = β0 +β1(PE
i,t−Pi,t−1)+β2(PE

i,t−1−Pi,t−2)+ εi,t.

The dependent variable is the change in prices from period t to t − 1; the independent variables

are the predicted Edgeworth adjustment and its lag.

Based on this estimation, we are able to formulate a number of hypotheses. The first hy-

pothesis is that there is no price adjustment process; that is, β1 = β2 = 0. The second hypothesis

is that firms make an immediate and perfect Edgeworth adjustment, which implies β0 = 0, β1 = 1

and β2 = 0. The third hypothesis, β1 = 0 is that any adjustment is not immediate; finally, the

fourth test is that there is no lag in the adjustment process, β2 = 0.

Estimating the Edgeworth price adjustment equation at the subject level and performing the

aforementioned tests broadly lead us to reject the hypothesis that the observed price adjustments are

either immediate or perfect. This is consistent across duopolies and triopolies and it is qualitatively

similar to the evidence presented by Brown-Kruse et al. (1994); the noticeable discrepancy is that

we report a higher rejection rate for the third hypothesis, which may indicate a worse performance

of Edgeworth cycle behavior in our data set. This evidence is summarized in table 6.

Tables 7 and 8 show the results from estimating the equation treatment by treatment in
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Treatment (1) (2) (3) (4)
β1 = 0, β2 = 0 β0 = 0, β1 = 1, β2 = 0 β1 = 0 β2 = 0

175-175 0.58 0.42 0.58 0.00
201-201 0.75 0.75 0.75 0.17
225-225 0.67 0.67 0.83 0.08
250-250 0.67 0.92 0.75 0.17
300-300 0.67 0.92 0.83 0.08

Duopolies 0.83 0.82 0.88 0.08
116-116-116 0.61 0.94 0.78 0.11
134-134-134 0.67 0.61 0.67 0.06
150-150-150 0.72 0.72 0.72 0.17
Triopolies 0.78 0.80 0.80 0.09

Table 6: Fraction of rejection of null hypothesis at the 5% level by treatment

(175-175) (201-201) (225-225) (250-250) (300-300) All
β1 0.521** 0.499** 0.485** 0.454** 0.465** 0.465**

(0.088) (0.046) (0.052) (0.034) (0.024) (0.020)

β2 -0.248* -0.043 -0.0892 -0.105* 0.041 -0.079
(0.090) (0.069) (0.053) (0.040) (0.042) (0.029)

β0 -0.829 0.074 -1.422 -1.908 0.154 -0.994
(0.558) (0.124) (1.068) (1.851) (0.246) (0.503)

Obs. 240 300 384 348 312 1584
R-squared 0.29 0.23 0.22 0.25 0.29 0.24

Table 7: Edgeworth-cycle estimates at treatment level: duopolies

(116-116-116) (134-134-134) (150-150-150) All
β1 0.467** 0.412** 0.388** 0.398**

(0.024) (0.076) (0.095) (0.064)

β2 0.014 -0.046 -0.131** -0.093*
(0.052) (0.035) (0.031) (0.033)

β0 -1.342* -1.241 -1.481 -1.224**
(0.417) (0.559) (0.775) (0.393)

Obs. 414 360 396 1170
R-squared 0.31 0.17 0.24 0.22

Table 8: Edgeworth-cycle estimates at treatment level: triopolies
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both the duopoly and triopoly conditions. Table 7 quantifies the extent to which duopolists make

myopic adjustments to their rival’s actions in the previous period. The coefficient of β1 is positive

and significant in all treatments, as well as in the aggregate. The coefficient of β2 is close to zero

and negative (except for treatment 300-300). However, β2 is only significant for treatments 175-

175 and 225-225, as well as in the pooled case. The same findings are repeated for the triopoly

conditions. The coefficient on β1 is positive and significant, while the coefficient on β2 is close to

zero and not always significant. This indicates that firms are indeed making immediate, if only

partial, adjustments to rivals’ previous period prices. Regression (2) confirms the same findings

with respect to the triopoly treatments, albeit with a weaker relationship.

These results give a much less conclusive view than the evidence from the aggregate level

data. A closer look at the price distributions in figure 2 may help understand why. On one hand,

we see in a number of treatments there is mass at p = 100 (this is clearest in the case of 175-175),

which may be indicative of collusion. On the other hand, in almost all treatments, we also see that

the lower bound of the pricing distribution is below the theoretical lower bound (which is the same

value in the Edgeworth cycle). So, while on the aggregate level, subjects appear to be behaving in

accordance to Edgeworth cycles, the individual level data does not always support this claim.

One alternative hypothesis is that a noisy Edgeworth process is occurring. The previous

section provided some tentative support for this hypothesis using aggregate level data.6 We now

turn our attention at how treatment effects impact Edgeworth cycles. Going back to table 6, we
6Feedback from post-experimental questionnaires reinforces this belief. We transcribe a representative description

by a subject of her behavior in the experiment: “Initially, I tried to set a price that would undercut the price set by

company A by a small amount so as to maximise profit. However, when the price set by company A got around 30,

I predicted that the next round it would be lower, something like 20-25 and so I set my price at 100. By forgetting

about setting the lowest price and selling 75 units at 100 I was guaranteed a profit of 7500. If instead I had tried to

undercut company A by setting my price at, say 20, I would only have made 5550 profit and this was less than 7500.”
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can also see the frequency with which our null hypotheses are rejected treatment by treatment.

The first thing to notice is that the percentage of rejections of hypothesis (1) (no Edgeworth

adjustment) is quite high across all treatments. Furthermore, the fraction of rejections of hypothesis

(4) is quite low across all treatments. This suggests that while there is in fact some type of

Edgeworth price adjustment ongoing, it is imperfect.

Focusing our attention to hypothesis (2), we see a rise in the rejection frequency as the

aggregate production capacity goes up (it would be perfectly monotonic if not for treatment 201-

201). This indicates that the higher total capacity is, the less likely it is that firms are making

perfect Edgeworth adjustments. The rejection rates of treatments 250-250 and 300-300 are already

close to 100%, meaning that almost no subject in that treatment is doing perfect Edgeworth price

adjustments. This is consistent with the evidence presented in table 2. The difference between the

average expected Edgeworth cycle prices and the observed prices increases as we move from the

low excess capacity treatment (175-175) to the the high excess capacity treatment (300-300). The

same pattern is not apparent from the triopoly data. This may be because subjects have difficulty

in tracking pricing behavior of more than one competitor.

The results also suggest a high level of heterogeneity in behavior across markets within the

same treatment. Figure 5 displays price histograms for treatment 175-175, which was the treatment

in which Edgeworth price adjustments were most salient. We see a high level of heterogeneity across

different groups; group 3 appears to be quite collusive, with a very high frequency of observations

close to or including p = 100, while group 6 has a distribution of prices which includes price

levels significantly below the lowest predicted price (75) in either mixed strategy equilibrium or

Edgeworth cycles. A similar conclusion is drawn from looking at the behavior in other treatments.

The complete set of histograms for all treatments is available in the Appendix. In short, Edgeworth

cycles predict of aggregate level behavior well, but not individual behavior.
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Figure 4: Histogram of pricing decisions by group, treatment 175-175

4.5 Aspiration Levels

Could loss aversion be a cause for the higher prices observed in the experiment? As noted above, as

excess capacity increases, the difference between predicted Nash prices and average weighted prices

also goes up. It seems plausible that, for high levels of excess capacity, subjects’ earnings might fall

below some (unobserved) aspiration level and thus causes subjects to charge higher prices. Such an

effect has been found in price-setting oligopolies where subjects incurred fixed cost for participating

in the market (Offerman and Potters, 2006) and in Cournot oligopolies where a merger caused one

firm to fall behind its pre-merger profit (Huck et al., 2007).

In order to test for aspiration levels, we ran a variant of the 250-250 treatment in which

we introduced a fixed cost of 5000 ECU in every period. This is the maximum fixed cost which

does not alter the mixed strategy equilibrium. As one can see from table 2, there are no significant

differences in weighted prices. If anything, price are even lower with the fixed cost. We cannot reject

the hypothesis that prices generated from the two treatments come from different distributions using

a Kolgomorov-Smirnov test, nor the hypothesis that the means are equal (Mann-Whitney U test).
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As such, we can conclude that aspiration levels does not play a significant role in behavior in the

experiments.7

4.6 Discussion

Our main research question is how variations in industry capacity affect pricing behavior in Bertrand-

Edgeworth oligopolies. Essentially, we found the following effects: firstly, the larger capacities, the

bigger the gap between average static Nash equilibrium prices and observed prices. Secondly, with

larger capacities the monopoly price is charged less frequently. Thirdly, the larger industry capacity,

the less predictive power myopic Edgeworth cycles have.

These findings constitute two puzzles. The first puzzle is that lower capacities are associated

with both more pronounced Edgeworth-cycle behavior and more monopoly pricing. After all,

Edgeworth-cycle behavior is based on playing a (myopic) best-reply (which is non-cooperative

behavior), whereas setting the monopoly price should be considered as tacit collusion. The second

puzzle is that the first result suggests there is relatively more collusion with higher capacities in the

sense that prices are increasingly above the Nash level. While the absolute price level is decreasing

with capacities, collusion defined relatively to Nash is increasing with capacities. But, if there is

more “collusion” with higher capacities, how does this fit with less monopoly pricing?

Our view is as follows. Suppose there is no excess capacity. Then firms participants would

surely charge the monopoly price almost all the time. All our predictions (static Nash, tacit

collusion and Edgeworth cycles) predict the monopoly prices. As excess capacity gets positive,

subjects play Edgeworth cycles. Note that, with smaller capacities, the monopoly price will be

played more frequently because the numbers of periods required for a complete cycle is smaller.

While this cannot fully explain the frequencies we observe, it may be part of the story explaining
7We will not include the data from 250-250-FC in the other parts of the analysis. Including them does not affect

the results presented in the paper.
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puzzle number one.

As capacities get bigger, the high-price firm earns relatively less money. The more “expensive”

it becomes to be the high-price firm, the more random subjects’ price choices become. By contrast,

with small capacities, the payoff gap between high and low-price firm is smaller. What this reasoning

boils down to is that playing the Edgeworth cycle is an (imperfect) form of tacit collusion. Subjects

do not always charge the monopoly price, nor do they take regular turns in being the high-price firm.

However, subjects can afford to play relatively predictable pricing patters when excess capacity is

low. Thus, with higher capacities Edgeworth cycles lose some of their predictive power. Thus,

puzzle number two remains but it is clear from the data that subjects play more aggressively.

Subjects still do play the static Nash but they do fall further below the Edgeworth-cycle level with

higher capacities. Their behavior becomes more, not less, competitive.

The notion that subjects play more collusively when excess capacity is high can also resolve

the issue that tacit collusion should be easier with three firms, not in duopoly. (Recall the minimum

discount factor in the repeated game is 1/n.) Controlling for industry capacity, average prices are

lower with three firms but they are actually “more collusive” in that the distance to Nash gets

bigger.

Finally, we discuss our findings regarding the discontinuities of the Bertrand-Edgeworth

model when capacities become non-binding or when there is no excess capacity at all such that

pure-strategy equilibria emerge. We found no comparable discontinuity in the data. Indeed, our

treatments “large” excess capacity suggesting perfect competition exhibited, to a large extent, cycli-

cal behavior even though capacities were not binding at all. The perhaps provocative conclusion

from this is that Bertrand experiments (or at least those Bertrand experiments with inelastic de-

mand like Dufwenberg and Gneezy, 2000; Brandts and Guillén (2004); Abbink and Brandts, 2007)

should consider the Bertrand-Edgeworth outcome as a plausible prediction. At marginal cost pric-
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ing, profits are zero and apparently players then choose to switch back to the maximum price. This

also gives them zero profit but it starts a new cycle. This is clearly boundedly rational behavior.

With “small” levels of excess capacity, we also found evidence for cyclical behavior. Here, however,

behavior seems more in line with the theory. Average Nash equilibrium prices and the support of

the mixed strategy converge to the monopoly price when excess capacities are small. This is what

is occurring in the data.

5 Conclusion

This paper examines pricing behavior in Bertrand-Edgeworth markets. In particular, we are inter-

ested in studying the effect on prices of increasing total production capacity. The game theoretical

analysis of this class of games predicts that a unique Nash equilibrium in pure strategies does not

exist if the total production capacity in the market is higher than demand, but any subset of firms

cannot serve the market by themselves. The only Nash equilibrium is in mixed strategies, where

firms randomly select from a unique distribution. In a previous analysis of this class of games,

Edgeworth (1925) proposed an alternative approach: he claimed that firms would engage in succes-

sive price adjustments relative to their rivals’ prices in the previous period. Firms would undercut

each other up to the point where it would be more profitable to charge the monopoly price, thus

creating a cycle.

When considering data at the aggregate level, our findings confirm the results of the original

Bertrand-Edgeworth experiments by Brown-Kruse et al. (1994). In other words, Nash theory

predicts the subjects’ pricing behavior only partially and only qualitatively well. Observed weighted

average prices move in the direction predicted by static Nash equilibrium: the higher the total

production capacity is, the lower prices are. This is occurs in both duopoly and triopoly conditions.

However, the rate of decrease in prices is much lower than predicted. When we focus our attention
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to pricing distributions, we find significant differences between predicted Nash price distributions

and the observed price distributions. We also find some evidence of attempts at collusive behavior.

The proportion of posted prices equal to 100 is negatively correlated with total capacity. However,

with the exception of one group, those attempts are largely unsuccessful.

By contrast, a model of myopic price adjustments provides a better fit of the data. Not only

are average weighted prices closer to the predicted Edgeworth cycle prices, but we cannot reject

the hypothesis that firms are engaging in some form of myopic price adjustment. Crucially, (and

perhaps counter-intuitively) the Edgeworth price adjustment process is stronger for treatments

with lower production capacities. As we move closer to the perfectly competitive case, the intensity

of Edgeworth cycle behavior diminishes dramatically. As a result the difference between expected

Edgeworth-cycle prices and average weighted prices also increases. Nevertheless, average weighted

prices are significantly above predicted Nash prices. This is quite clear for the case where Nash

equilibrium prices are zero.
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Appendix A: Proofs

Proof of Proposition 1. The probability that firm i is the firm with the highest price is (G(p))n−1,

and 1− (G(p))n−1 is the probability that firm i does not charge the highest price. In equilibrium,

the expected profit of all prices contained in the support must be the one given in the Proposition,

p(m− (n− 1)k), that is,

p
[
(G(p))n−1(m− (n− 1)k) + (1− (G(p))n−1)k

]
= p(m− (n− 1)k). (4)

Manipulating (4) yields

p
[
(G(p))n−1(m− nk) + k

]
= p(m− (n− 1)k) (5)

(G(p))n−1 =
p(m− (n− 1)k)− pk

p(m− nk)
(6)

Note that G(p(m− (n− 1)k)/k) = 0 and G(p) = 1. This verifies that a firm earns πN for any price

is the support provided the other firms randomize according to G(p).

The capacity-weighted average Nash price is derived as follows. If qi denotes the number of

units sold by firm i, the weighted average price is
∑n

i=1 piqi/
∑n

i=1 qi. From
∑n

i=1 qi = m and since

∑n
i=1 piqi =

∑n
i=1 πN

i in Nash equilibrium, we obtain pN =
∑n

i=1 πN
i /m = p(m− (n− 1)k)n/m as

claimed. Note that the weighted average price differs from the unweighted mean since the high-price

firms sells less than its capacity.

Finally, uniqueness of the equilibrium is simply implied by the observations that (i) there

cannot be a pure-strategy equilibrium; (ii) there cannot be a mixed-strategy equilibrium which

puts positive weights on prices outside the support since prices p < p are strictly dominated by p;

(iii) there cannot be a mixed-strategy equilibrium on [p, p] with different randomization weights

because, as can be seen from the derivation of the equilibrium G(p) above, if firm i chooses any price

p more frequently than G(p), firm j would best respond by charging the pure strategy p− ε—which
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cannot be an equilibrium. ¤

Proof of Proposition 2. Suppose first that firms successfully collude by tacitly agreeing to

charge a price of p ≤ p. Then collusive profits are πc
i = pmk/K = pm/n (that is, each firm gets its

symmetric share of industry profit). Defecting with a price marginally smaller than p, firm i can

get πd = pk > πc
i . Finally, πp

i = p(m− (n− 1)k). Collusion is a subgame perfect Nash equilibrium

only if πc/(1− δ) ≥ πd + πpδ/(1− δ) or

δ ≥ πd − πc

πd − πp
=

p− pm/(nk)
p− p(m− (n− 1)k)/k

(7)

From ∂δ/∂p < 0, colluding with a price smaller than p not only decreases profits but also requires

a higher discount factor. Therefore, we analyze perfect collusion where firms charge the reservation

price p when colluding. With p = p, (7) simplifies to δ ≥ 1/n. ¤

Proof of Proposition 3. The best response characterized by (3) implies that prices are chosen

from the interval [p, p] (which coinciudes with the suport of the mixed-strategy equilibrium). The

prove the proposition, we need to show that prices are uniformly distributed over the interval.

Suppose first that there are n = 2 firms and let p1 ≥ p2 denote the two (weakly) highest

prices charged in t = 0. If p1 > p2 strictly, the high-price firm will charge p2 − 1 in t = 1 and all

other firms will set p1 − 1 in t = 1. Then max{pt=1
j 6=i} = p1 − 1 for all firms and thus all firms will

charge p1 − 2 in t = 2. But then all firms will charge p1 − 3 in t = 3, p1 − 4 in t = 4 and so on

until the firms switch to p and eventually charge p1− 2 to begin a new Edgeworth cycle. Hence, all

prices in [p, p] are chosen exactly once by all firms in a cycle (except for the first two periods) and

thus prices are uniformly distributed. The same holds if p1 = p2 in t = 0. All firms set the same

price already from period t = 1 on and then play the Edgeworth cycle.

With n = 2 firms, the pattern is different. As the is only one rival for each firm, max{pt
j 6=i}

is always the price of the other firm. This trivially leads to Edgeworth cycles where all price are
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played and are thus uniformly distributed. To see this, suppose that in t = 0 firm 1 chooses p̂ and

firm 2 chooses p̃. Then the follwing pattern in Table ? emerges (where p̂− 6 = p is merely chosen

as an illustration). Prices p̂, p̂− 1, p̂− 2, ..., p̂− 6 = p, p, p− 1, ..., p̂ + 1 are played exactly once

over an Edgeworth cycle and prices are thus uniformly distributed.

t = 0 t = 1 t = 2 t = 3 t = 6 t = 7 t = 8 t = 9

firm 1 p̂ p̃− 1 p̂− 2 p̃− 3 ... p̂− 6 = p p̃− 7 p− 1 p̃− 5

firm 2 p̃ p̂− 1 p̃− 2 p̂− 3 ... p̃− 6 p p̃− 4 p− 2
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Appendix B: Sample Duopoly Instructions

Instructions

Hello and welcome to our experiment. Please read this instruction set very carefully, since

through your decisions and the decisions of other participants, you may stand to gain a significant

amount of money. We ask you to remain silent during the entire experiment; if at any point in

time you require assistance, please raise your hand.

In this experiment you will be in the role of a firm, which is in a market with another firm.

The firms produce some good and there are no costs of producing this good.

This market is made up of 300 identical consumers, each of whom wants to purchase one unit

of the good at the lowest price. The consumers will pay as much as 100 Experimental Currency

Units (ECU) for a unit of the good.

In each market there will be 2 firms, A and B. You can find your type written on the top

right-hand corner of this instruction set. Each firm will be able to supply 300 consumers.

The market will operate as follows. In the beginning of each period, all firms will set their

selling prices. Then the firm who set the lowest price will sell its capacity at the selected price.

The firm who set the second lowest price will not have any customers left to supply.

If more than one firm set the same price and if the number of consumers firms can supply

is higher than the number of consumers who haven’t bought the good, then they will split the

available consumers proportionally to their capacity. In order to fix ideas, let us go over a couple

of illustrative examples:

Example A:

Suppose that the two firms choose the following prices: Firm A sets a price of 85 and firm B

chooses a price of 75. Firm B set the lowest price and therefore sells its 300 units first at a price of

75, making a profit of 22,500 ECU. Firm A set the highest price and therefore will not supply any
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customers, therefore making 0 ECU.

Example B: Suppose that the two firms choose the following prices: Firm A and firm B both

set a price of 70. Given that they set the same price and also given that their combined capacity

(600 units) is larger than the number of customers, they will have to share the available customers.

Since their capacities are equal, so will their share of the sales. Hence, both firms will sell 150 units

at a price of 70 each unit, therefore making a profit of 10,500 ECU.

At the end of each period, all the firms are informed of the chosen prices by all firms and

their own profits. There will be at least 30 periods in this experiment once the 30th period is over,

the computer will throw a ”virtual” dice that will determine whether the experiment continues. If

a value of 6 is shown, the experiment is over. If any other value is shown, the experiment continues.

You will be matched with the same participants in every period.

At the end of the experiment, you will be told of the sum of profits made during the experi-

ment, which will be your payment. You will receive £1 for every 25,000 ECU you earn during the

experiment. Additionally you will receive £5 for participating.
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Appendix C: Sample Triopoly Instructions

Instructions
Hello and welcome to our experiment. Please read this instruction set very carefully, since

through your decisions and the decisions of other participants, you may stand to gain a significant
amount of money. We ask you to remain silent during the entire experiment; if at any point in
time you require assistance, please raise your hand.

In this experiment you will be in the role of a firm, which is in a market with two other firms.
The firms produce some good and there are no costs of producing this good.

This market is made up of 300 identical consumers, each of whom wants to purchase one unit
of the good at the lowest price. The consumers will pay as much as 100 Experimental Currency
Units (ECU) for a unit of the good.

In each market there will be 3 firms, A, B and C. You can find your type written on the top
right-hand corner of this instruction set. Each firm will only be able to supply a fraction of the 300
consumers. Firms A, B and C will each be able to supply 116 consumers.

The market will operate as follows. In the beginning of each period, all firms will set their
selling prices. Then the firm who set the lowest price will sell its capacity at the selected price.
Then, the firm who set the second lowest price will supply either its capacity or whatever is left of
the market at the chosen price and so on.

If more than one firm set the same price and if the number of consumers firms can supply
is higher than the number of consumers who haven’t bought the good, then they will split the
available consumers proportionally to their capacity. In order to fix ideas, let us go over a couple
of illustrative examples:

Example A:
Suppose that the three firms choose the following prices. Firm A sets a price of 85, firm B

sets a price of 76 and firm C chooses a price of 63. Firm C sets the lowest price and sells 116
units first, making a profit of 63 x 116 = 7308 ECU. Firm B set the second lowest price and has a
remaining 184 customers to sell to. Therefore it will sell 116 units at price of 76, thus generating
profits of 116x76=8816. Firm A set the highest price. Because firms B and C have already sold
their output, there are 68 customers left. Firm A will then sell 68 units at a price of 85, generating
5780 units of profit.

Example B:
Suppose that the three firms choose the following prices. Firm A sets a price of 50, firm B

chooses a price of 45 and firm C chooses a price of 50. This means that firm B will sell all its
output first to 116 customers and make 5220 ECU profit (116x45). This leaves 184 customers left
to supply. Given that both firm A and C have set the same price and the fact that they can sell a
combined total of 232 units, this means they will have to share whatever customers are left. Given
that both firm A and C can sell 116 units each, this means they will share the 184 consumers
equally. So firm A and C will sell 92 units at a price of 50, making 4150 ECU profit.

At the end of each period, all the firms are informed of the chosen prices by all firms and
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their own profits. There will be at least 30 periods in this experiment; once the 30th period is over,
the computer will throw a ”virtual” dice that will determine whether the experiment continues. If
a value of 6 is shown, the experiment is over. If any other value is shown, the experiment continues.

You will be matched with the same participants in every period.
At the end of the experiment, you will be told of the sum of profits made during the experi-

ment, which will be your payment. You will receive £1 for every 15,000 ECU you earn during the
experiment. Additionally you will receive £5 for participating.
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Appendix D: Graphs
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Figure 5: Histogram of pricing decisions by group, treatment 175-175
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Figure 6: Histogram of pricing decisions by group, treatment 201-201
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Figure 7: Histogram of pricing decisions by group, treatment 225-225
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Figure 9: Histogram of pricing decisions by group, treatment 300-300
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Figure 10: Histogram of pricing decisions by group, treatment 116-116-116
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Figure 11: Histogram of pricing decisions by group, treatment 134-134-134
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Figure 12: Histogram of pricing decisions by group, treatment 150-150-150
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