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Abstract

Consumption is an important macroeconomic aggregate, being about 70% of GNP.

Finding sub-optimal behavior in consumption decisions casts a serious doubt on whether

optimizing behavior is applicable on an economy-wide scale, which, in turn, challenge

whether it is applicable at all.

This paper has several contributions to the literature on consumption optimality.

First, we provide a new result on the basic rule-of-thumb regression, showing that it is

observational equivalent to the one obtained in a well known optimizing real-business-

cycle model. Second, for rule-of-thumb tests based on the Asset-Pricing Equation, we

show that the omission of the higher-order term in the log-linear approximation yields

inconsistent estimates when lagged observables are used as instruments. However,

these are exactly the instruments that have been traditionally used in this literature.

Third, we show that nonlinear estimation of a system of N Asset-Pricing Equations

can be done e¢ ciently even if the number of asset returns (N) is high vis-a-vis the

number of time-series observations (T ). We argue that e¢ ciency can be restored by

aggregating returns into a single measure that fully captures intertemporal substitution.

Indeed, we show that there is no reason why return aggregation cannot be performed
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in the nonlinear setting of the Pricing Equation, since the latter is a linear function

of individual returns. This forms the basis of a new test of rule-of-thumb behavior,

which can be viewed as testing for the importance of rule-of-thumb consumers when the

optimizing agent holds an equally-weighted portfolio or a weighted portfolio of traded

assets.

Using our setup, we �nd no signs of either rule-of-thumb behavior for U.S. con-

sumers or of habit-formation in consumption decisions in econometric tests. Indeed,

we show that the simple representative agent model with a CRRA utility is able to

explain the time series data on consumption and aggregate returns. There, the in-

tertemporal discount factor is signi�cant and ranges from 0:956 to 0:969 while the

relative risk-aversion coe¢ cient is precisely estimated ranging from 0:829 to 1:126.

There is no evidence of rejection in over-identifying-restriction tests.

1 Introduction

For the U.S. economy, there has been a large early literature using time-series data reject-

ing optimizing behavior in consumption generating some relevant puzzles; see Hall (1978),

Flavin (1981), Mankiw (1981), Hansen and Singleton (1982, 1983, 1984), Mehra and Prescott

(1985), and Campbell and Deaton (1989). In two in�uential articles, following an initial idea

in Hall and Mishkin (1982), Campbell and Mankiw (1989, 1990) extended the basic opti-

mizing model incorporating rule-of-thumb behavior. There are two types of consumers: the

�rst type consumes according to optimizing behavior but the second consumes only his/her

current income. In this context, tests of no rule-of-thumb behavior are performed using the

�rst order log-linearized version of the euler equation of the optimizing agent. Using G7
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data, Campbell and Mankiw concluded that rule-of-thumb behavior was widespread. For

the U.S. economy, about 50% of total income belongs to rule-of-thumb consumers. Evidence

for other countries are even more �compelling.�

In econometric tests, whenever a speci�c null hypothesis is being tested, there are usually

auxiliary hypothesis being tested as well. In Campbell and Mankiw�s case, when testing for

the nonexistence of rule-of-thumb consumers, the auxiliary assumption is the validity of the

�rst-order log-linearized version of the euler equation for optimizing consumers. Rejecting

the null may be due to the inappropriateness of optimizing behavior or to the fact that the

�rst-order log-linear approximation of the euler equation is a poor one (or both).

In this paper, we o¤er theoretical and econometric reasons to invalidate empirical results

of current rule-of-thumb tests, showing that rule of thumb is not present when novel empir-

ical tests are applied to U.S. data. First, using the dynamic stochastic general-equilibrium

(DSGE) model of King, Plosser and Rebelo (1988), with no rule-of-thumb behavior, Issler

and Vahid (2001) showed that there exists a linear combination of consumption and income

growth that is unpredictable. This is exactly the implication that basic rule-of-thumb tests

investigates. Observational equivalence implies that, even if one �nds that income and con-

sumption growth have similar short-run co-movement, one cannot conclude in favor of the

presence of rule-of-thumb. Second, employing a generalized taylor expansion of the opti-

mizing consumer�s euler equation, we consider what are the econometric consequences of

ignoring high-order terms once a naïve �rst-order expansion is �tted to data. As one should

expect, ignoring higher-order terms yields inconsistent estimates of the proportion of rule-of-

thumb consumers, invalidating hypothesis testing. Third, as is well known, this �rst-order

expansion is only valid under stringent but testable restrictions. Using long-span U.S. data
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on consumption, income and the return to aggregate capital, we provide evidence that these

stringent restrictions are not valid. Moreover, when an appropriate novel rule-of-thumb test

is applied to this same data set, we �nd no evidence of its presence.

The possibility of a positive bias for the proportion of rule-of-thumb consumers in current

tests was discussed by Weber (2002). He follows Cushing (1992), who argues that the

combination of quadratic utility with habit formation implies that observed consumption

growth is correctly modeled as a �rst order autoregressive-distributed lag function of growth

in disposable income. Omission of this term in rule-of-thumb tests leads to a positive bias for

the proportion of rule-of-thumb consumers, since lagged income variation is highly positively

correlated with the error term. This explains the large presence of rule-of-thumb consumers

found by Campbell and Mankiw and in the literature that followed. A crucial step in Weber�s

result is to assume that habit formation is present in preferences.

Here we go one step further by using a generalized taylor expansion approach. Regardless

of the way one speci�es preferences, unless the highly restrictive assumption that consump-

tion growth and asset returns are log-Normal and homoskedastic is kept, we show that,

once higher-order terms are omitted in running rule-of-thumb tests, all lagged observables

are invalid instruments in log-linear regressions. But these are exactly the instruments that

have been used in testing rule-of-thumb behavior up to now. Moreover, it is hard to �nd

instruments other than lagged observables. Hence, our critique is much deeper than that of

Weber�s.

Once we fully characterized the problem, we searched for a robust test for the existence

of rule-of-thumb consumers. As in Weber, we �rst employ the nonlinear euler equation as a

basis for testing. Weber�s key insight is to realize that consumption of the optimizing agent
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is aggregate consumption minus rule-of-thumb consumption. Thus, we can write the euler

equation of the optimizing consumer in terms of observables and unknown parameters, and

the generalized method-of-moments (GMM) can be used in estimation and as a basis for

testing. Second, we argue that the e¢ cient estimation of intertemporal substitution requires

the use of all assets in the economy. This is a consequence of the fact that the Asset-Pricing

Equation is valid for all traded securities and not for just a few. In other words, consumption

should only respond to systematic changes in returns and individual returns can �uctuate

because of idiosyncratic changes. Because it may be unfeasible to use all asset returns in

the economy �if the number of time-observations is relatively small vis-a-vis the number

of assets � we propose the cross-sectional aggregation of the nonlinear euler equation of

individual returns, showing that the resulting aggregate equation can be viewed as the euler

equation for the optimizing agent when he/she holds an equally-weighted portfolio of traded

assets (or a weighted portfolio). In this context, aggregation is optimal, which follows from

the work of Driscoll and Kraay (1998).

In a log-linear setting, the idea that the cross-sectional aggregation of individual returns

follows closely intertemporal substitution was the key insight of Mulligan (2002). Here, we

go one step further and show that we can perform cross-sectional aggregation of the euler

equation for individual returns. This is feasible, interpretable, and also e¢ cient when the

number of cross-sectional units grows large, as argued in Driscroll and Kraay.

Attanasio and Weber (1995) show that the euler equation of an individual consumer is

nonlinear on consumption. Therefore, aggregating euler equations across consumers using

the techniques in Browning, Deaton and Irish (1985) and Deaton (1985) does not yield the

euler equation of a representative consumer. Despite that, euler equations can be cross-
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sectionally aggregated across returns, since they are a linear function of individual returns.

The aggregate euler equation will be that of a representative consumer who holds an equally-

weighted portfolio of traded assets (or a weighted portfolio).

Empirically, we provide overwhelming evidence against rule-of-thumb behavior for U.S.

consumers and against habit-formation in consumer preferences using novel tests. Our results

are in sharp contrast to those in Campbell and Mankiw regarding rule of thumb and to those

in Weber regarding habit formation. Indeed, we show that we can appropriately represent

preferences for the U.S. consumer using a constant relative-risk-aversion (CRRA) utility

function: estimates of the annual discount factor are signi�cant and range from 0:956 to

0:969, while those of the relative risk-aversion coe¢ cient are also signi�cant ranging from

0:829 to 1:126. Moreover, there is no evidence of rejection in over-identifying-restriction

tests.

Our key result is that, once proper models and econometric techniques are applied to

aggregate consumption, income, and aggregate return data, there is no reason to challenge

optimizing behavior in consumption, as was the case with previous rule-of-thumb tests. We

also show that augmented models for preferences such as consumption with habit forma-

tion are unnecessary to characterize intertemporal substitution. In that sense, our evidence

reduces the fear that optimizing behavior is the exception, not the rule.

The paper proceeds as follow. Section 2 presents the problem and our proposed solution.

Section 3 presents the empirical results, and Section 4 concludes.
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2 Testing Rule-of-Thumb Behavior in Consumption

2.1 The Standard Approach

The initial idea about rule-of-thumb behavior in consumption was proposed by Hall

and Mishkin (1982) in a panel-data context. Campbell and Mankiw (1989, 1990) extended

their setup making it operational using time-series techniques: interpreting aggregate regres-

sion coe¢ cients and providing an econometric test for its presence at the aggregate level.

Campbell and Mankiw have a basic restrictive framework, where optimizing consumers have

quadratic utility, and a more general setup where optimizing behavior is consistent with the

Asset Pricing Equation, albeit subject to the validity of a log-linear approximation.

Campbell and Mankiw�s basic framework has two types of consumers: consumer of the

�rst type (consumer 1) consumes according to optimizing behavior under quadratic utility.

They impose Hall�s (1978) restriction that the product of the discount rate and the one-

period real return on wealth is equal to unity in every period, leading to the result that

consumption of the optimizing agent is a martingale1. The second type of consumer is

restricted to consume his/her current income (Y2;t), with no optimizing behavior. Income of

the restricted consumer holds a �xed proportion (�) to aggregate income as follows: � = Y2;t
Yt
,

leading to the following relationship between aggregate consumption (Ct) and income (Yt):

�Ct = � + ��Yt + (1� �) �t, (1)

1Alternatively, we can think of the optimizing agent following the permanent-income framework as pro-

posed by Flavin (1981).
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or, to a logarithmic approximation:

� ln (Ct) = � + �� ln (Yt) + (1� �) �t; (2)

where �t is unpredictable, since it is an innovation regarding the optimizing agent�s informa-

tion set.

Because the framework of quadratic utility is too restrictive, Campbell and Mankiw

expanded their basic framework to deal with the (Asset) Pricing Equation, using an aggregate

return to wealth (Rt+1):

Et
�
�
u0 (Ct+1)

u0 (Ct)
Rt+1

�
= 1; (3)

where Et(�) denotes the conditional expectation given the information available at time t,

u0 (�) > 0 is the �rst derivative of the utility function, and � 2 (0; 1). Under the same

structure as before �one optimizing agent whose consumption obeys (3) and one restricted

agent whose consumption equals �Yt �they obtain:

� ln (Ct) = �� ln (Yt) + (1� �)
�
1

�
ln (�) +

�

2
�2� +

1

�
rt

�
+ �t, (4)

where it is assumed that u0 (Ct) = C��t , with � representing the constant relative risk-

aversion coe¢ cient, and rt = ln (Rt). Again, the error term �t is unpredictable, since it is

an innovation regarding the optimizing agent�s information set.

Testing the presence of rule-of-thumb behavior in consumption amounts to a statistical

test of the null hypothesis H0 : � = 0 either in (2) or in (4), where estimation is done using

instrumental-variable techniques. Under H0, non-optimizing consumers have zero income

and are therefore negligible.

The conditions under which equations (1) (or (2)) and (4) are derived are very stringent.

On the one hand, the former requires utility to be quadratic on consumption. On the

9



other hand, log-linearizing (3) leading to (4) requires joint conditional log-Normality and

homoskedasticity of
�

Ct
Ct�1

; Rt

�0
, yielding:

� ln (Ct) =
1

�
ln (�) +

�

2
�2� +

1

�
rt + �t, (5)

where �t j
t�1 � N
�
0; �2�

�
, with 
t�1 representing the information set of the optimizing

agent.

The fact that �t is conditionally Gaussian and uncorrelated with elements of the con-

ditioning set 
t�1 implies that �t and �t�s, s > 0 are independent. Moreover, �t must be

independent of any function of the variables in 
t�1. In principle, residual-based tests of

normality, conditional homoskedasticity, and independence can be used to ensure that these

restrictions apply to �t. In particular, we employ the Jarque and Bera (1987) test for normal

errors, the LM serial correlation test, the ARCH test for homoskedasticity, and the Brock et

al.�s (1996) BDS test for independence.

2.2 Observational Equivalence: A Critique of the Basic Model

Testing Rule-of-Thumb

As stressed in Issler and Vahid (2001), in the dynamic stochastic general equilibrium

(DSGE) model of King, Plosser, and Rebelo (1988), output, consumption and investment

share co-movements (or have common features) as a result of the optimizing behavior of

the representative agent. Under log-utility, full-depreciation of the capital stock, and Cobb-

Douglas technology, the closed-form solutions for the logarithms of output or income (Yt),
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consumption (Ct), and investment (It), are, respectively:

log (Yt) = log (Xp
t ) + y + �yk bkt

log (Ct) = log (Xp
t ) + c+ �ck bkt

log (It) = log (Xp
t ) + i+ �ik bkt; (6)

where log (Xp
t ) = �+ log

�
Xp
t�1
�
+ "pt is the random-walk productivity process, y, c and i are

the steady-state values of log (Yt=X
p
t ) ; log (Ct=X

p
t ), and log (It=X

p
t ) respectively, and �jk;

j = y; c; i is the elasticity of variable j with respect to deviations of the capital stock from

its stationary value
�bkt�.

Focusing on the �rst two equations in (6), it is straightforward to verify that:

� log (Ct) =
�ck
�yk
� log (Yt) +

�ck � �yk
�yk

(�+ "pt ) : (7)

where "pt is the innovation of the productivity process log (X
p
t ).

Recall now the basic setup with quadratic utility in Campbell and Mankiw (1989, 1990),

represented by equation (2). It is straightforward to conclude that (7) and (2) are observa-

tionally equivalent, with �ck
�yk

= �, �ck��yk
�yk

� = �, and �ck��yk
�yk

�pt = (1� �) �t. Thus, validating

(2) with data cannot be used to support the existence of rule-of-thumb behavior, since it

also validates the optimizing behavior behind (6).
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2.3 A Generalized Taylor-Expansion Approach: A Critique of

Usual Log-Linear Approximations of the Asset-Pricing Equa-

tion Applied to Rule-of-Thumb Tests

The starting point of our approach is the Asset-Pricing Equation (or Pricing Equation,

for short):

Et fMt+1xi;t+1g = pi;t; i = 1; 2; : : : ; N; or (8)

Et fMt+1Ri;t+1g = 1; i = 1; 2; : : : ; N; (9)

where Mt is the stochastic discount factor, pi;t denotes the price of the i-th asset at time t,

xi;t+1 denotes the payo¤ of the i-th asset in t+ 1, Ri;t+1 =
xi;t+1
pi;t

denotes the gross return of

the i-th asset in t+ 1, and N is the number of assets in the economy.

We assume that the Pricing Equation (9) holds and that the stochastic discount factor

obeys Mt = � u0(Ct)
u0(Ct�1)

> 0, where � 2 (0; 1), and u0 (�) > 0 is consumption�s marginal

utility. Following Araujo and Issler (2008), we consider a generalized taylor expansion of the

exponential function around x; with increment h; as follows:

ex+h = ex + hex +
h2ex+�(h)�h

2
; with �(h) : R! (0; 1) : (10)

For the expansion of a generic function, �(�) would depend on x and h. However, dividing

(10) by ex:

eh = 1 + h+
h2e�(h)�h

2
; (11)

shows that (11) does not depend on x. Indeed, we can get a closed-form solution for �(�) as
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function of h alone2.

To connect (11) with the Pricing Equation (9), we let h = ln(MtRi;t) to obtain:

MtRi;t = 1 + ln(MtRi;t) +
[ln(MtRi;t)]

2 e�(ln(MtRi;t))�ln(MtRi;t)

2
: (12)

It is important to stress that (12) is not an approximation but an exact relationship. The

behavior of MtRi;t is governed solely by that of ln(MtRi;t). It is useful to de�ne a random

variable collecting the higher-order term in (12):

zi;t �
1

2
� [ln(MtRi;t)]

2 e�(ln(MtRi;t))�ln(MtRi;t):

Notice that zi;t is a function of ln(MtRi;t) alone and that zi;t � 0 for all (i; t). Taking the

conditional expectation of both sides of (12), imposing the Pricing Equation and rearranging

terms gives:

Et�1 (zi;t) = �Et�1 fln(MtRi;t)g : (13)

To ensure that Et�1 (zi;t) exists we constrain the process fln(MtRi;t)g so that its condi-

tional expectation is well de�ned. Weak-stationarity of fln(MtRi;t)g is a su¢ cient condition

for that. Let "t � ("1;t; "2;t; :::; "N;t)
0 stack the conditional mean of the individual forecast

errors "i;t = ln(MtRi;t)� Et�1fln(MtRi;t)g. From the de�nition of "t we have:

ln(MtRt) = Et�1fln(MtRt)g+ "t: (14)

Starting with (14), denoting ri;t = ln (Ri;t), mt = ln (Mt), and using �Et�1 (zi;t) =
2This solution is:

�(h) =

8>><>>:
1
h � ln

�
2�(eh�1�h)

h2

�
; h 6= 0

1=3; h = 0:
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Et�1 fln(MtRi;t)g, we get:

ri;t = �mt � Et�1 (zi;t) + "i;t; i = 1; 2; : : : ; N: (15)

Within a CCAPM framework, we specialize letting u (Ct) =
C1��t �1
1�� , for � 6= 1, and u (Ct) =

ln (Ct), for � = 1, i.e., the canonical form for u (Ct), which gives,

� ln (Ct) =
ln (�)

�
+
1

�
ri;t +

Et�1 (zi;t)
�

+ �i;t; i = 1; 2; : : : ; N , (16)

where �i;t = �
"i;t
�
.

It is important to stress that Et�1(zi;t)
�

captures the e¤ect of the higher-order terms of the

taylor expansion, in general it will be a function of the variables in the conditioning set used

by the econometrician to compute Et�1 (�). Therefore, omission of Et�1(zi;t)�
(or of parts of it)

in estimating (16) will generate an omitted-variable bias. This will turn out to be a major

problem for versions of (16) usually estimated in the rule-of-thumb literature3.

Using (16), we can write:

� ln (Ct) =
(1� �)
�

ln (�) + �� ln (Yt) +
(1� �)
�

ri;t (17)

+
(1� �)
�

Et�1 (zi;t) + (1� �)�i;t, for all i

where the only di¤erence between (17) and Campbell and Mankiw�s setup (i.e., (4)) is the

inclusion of the term (1��)
�
Et�1 (zi;t) and the fact that we are considering N assets in the

economy instead of just one.

3

Notice that (16) is a generalized version of (5) when we consider several assets instead of just one. We do

not impose any distributional assumptions on �i;t and the higher order term
Et�1(zi;t)

� shows naturally in it.

Homoskedasticity in deriving (5) conveniently imposes that Et�1(zi;t)� is constant, which is very restrictive.
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When � = 0, there is no rule-of-thumb behavior, therefore a critical issue in testing the

null hypothesis H0 : � = 0 is to obtain consistent estimates for �. Suppose that the term

(1��)
�
Et�1 (zi;t) is omitted in running (17). Then, the error term becomes correlated with all

the variables in the conditioning set used by the econometrician to compute Et�1 (zi;t). How-

ever, these are the same variables used as instruments in past empirical studies. Within this

context, omitting (1��)
�
Et�1 (zi;t) results in inconsistent instrumental-variable (IV) estimates

for � and invalid inference when testing H0 : � = 0.

Notice that, in general, it is impossible to determine whether plim
T!1

d�IV �� 7 0. However,
since most macroeconomic variables are pro-cyclical, it is very likely that plim

T!1
d�IV � � > 0

when (1��)
�
Et�1 (zi;t) is omitted, leading IV estimates to have an upward asymptotic bias,

explaining why so many macroeconomic studies rejected H0 : � = 0 in favor of HA : � > 0;

see Campbell and Mankiw (1989) and most of the literature that followed.

Inconsistency of IV estimates is a result of omitting the term (1��)
�
Et�1 (zi;t) in running

(17). However, the only reason why this term is present in (17) is because we use a log-linear

approximation of the Pricing Equation (9). We can circumvent the problem if we do not try

to log-linearize the Pricing Equation. This was exactly the approach taken by Weber (2002),

who proposed an alternative way of testing rule-of-thumb behavior employing the non-linear

equation (9) directly. We must stress that Weber did not motivate his framework by using

the log-linearization argument employed here. We advance fromWeber in the understanding

of the problem by considering the expansion (12). Because of that, we are able to show that

lagged observables are correlated with the error term due to omitted higher-order terms.

This is a much deeper critique of the rule-of-thumb approach in Campbell and Mankiw

than Weber�s. Indeed, since almost all past rule-of-thumb empirical studies used lagged
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observables as instruments, and omitted higher-order terms, their empirical �ndings may be

invalid.

Using a nonlinear instrumental variable estimator � a generalized method-of-moment

(GMM) estimator �Weber employed directly (9) to estimate structural parameters and test

H0 : � = 0. He shows that we can write the optimizing agent�s consumption (C1;t) as a

function of observables since, under rule-of-thumb behavior:

C1;t = Ct � �Yt: (18)

Because the optimizing agent obeys the euler equation (9), we could use GMM to estimate

the structural parameters associated with the optimizing agent as well as � in:

Et�1
�
�

u0 (Ct � �Yt)
u0 (Ct�1 � �Yt�1)

Ri;t

�
= 1; i = 1; 2; : : : ; N; (19)

for a given choice of u0 (�).

The only di¤erence between (19) and Weber�s setup is the fact that we are considering N

assets in the economy instead of just one. We now try to justify the use of a disaggregated

setup for asset returns.

Most past empirical studies in consumption completely ignored the fact that the opti-

mizing agent decides on consumption when faced with the prospects of expected discounted

returns on N assets, such as in the system of equations in (19). E¢ cient estimation of pref-

erence and other parameters in the system requires estimating the whole system instead of

just a portion of it. This happens for the same reason why single-equation OLS estimation

is less e¢ cient than SUR estimation in the context of linear regressions. System estimation

may pose a problem in this context, since, in principle, the number of traded assets (N) in

a real economy is large relative to the number of time-series observations (T ). Indeed, if
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N ! 1 with �xed T , estimating the whole system is unfeasible and full-e¢ ciency cannot

be attained. Most of the literature opted to limit the size of N , e.g., N = 2: a risky and a

�riskless�asset or, at most, a handful of assets. Of course, this solution is sub-optimal at

the cost of e¢ ciency.

In an interesting paper, Mulligan (2002) shows that an alternative to estimating the

system as a whole is cross-sectional aggregation, where we do not throw away useful in-

formation contained in Ri;t, i = 1; 2; : : : ; N , but rather aggregate it to isolate the common

component of asset returns; see also the equivalent approach in Araujo and Issler (2008). The

idea behind cross-sectional aggregation is that intertemporal substitution is a consequence

of changes that a¤ect all returns, i.e., to systematic changes in returns, since idiosyncratic

movements in Ri;t do not a¤ect aggregate consumption. If N is su¢ ciently large (or N !1)

cross-sectional aggregation will deliver the common component of returns associated with

intertemporal substitution.

As Campbell and Mankiw, Mulligan starts with a log-linear approximation of the Pricing

Equation (9) such as (16). In what follows we present a stylized version of Mulligan to be

able to discuss the problems related with approximating (9). Consider the sequence of

deterministic weights f!igNi=1, such that j!ij < 1 uniformly on N , with
NX
i=1

!i = 1 or

lim
N!1

NX
i=1

!i = 1, depending on whether we allow or not the existence of an in�nite number

of assets. Cross-sectional aggregation of (16) implies:

� ln (Ct) =
1

�
ln (�) +

1

�
rt +

1

�
Et�1 (zt) + �t, (20)

where rt =
NP
i=1

!iri;t is the logarithm of the return to the geometric average of aggregate

capital, zt =
NP
i=1

!izi;t, and �t =
NP
i=1

!i�i;t. Notice that we can specialize !i = 1=N to
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use equal weights in aggregation. Despite aggregating returns, Mulligan omits the term

1
�
Et�1 (zt) in estimating (20), potentially leading to an omitted-variable bias.

From an econometric point-of-view, the cross-sectional aggregation leading to (20) is very

similar to the theoretical approach of Driscoll and Kraay (1998), although the latter is more

general because it also applies if the setup is non-linear. They use orthogonality conditions

of the form E (h (�; wi;t)) = 0, i = 1; 2; : : : ; N . If N is large relative to T , GMM estimation

is not feasible, since we cannot estimate consistently the variance-covariance matrix of the

sample moments. Despite that, since for all i the orthogonality conditions hold, we can form

a cross-sectional average eh (�) = 1
N

NP
i=1

h (�; wi;t), and estimate � by GMM from E
�eh (�)� = 0.

Under a set of standard assumptions, Driscoll and Kraay prove consistency and asymptotic

normality for the GMM estimates of �. That happens whether N is �xed or N !1 at any

rate. Here, despite specializing to !i = 1=N , cross-sectional aggregation is also the solution

to the problem of excess of orthogonality conditions.

It is important to stress that, although the approach in Mulligan is inappropriate if the

log-linear approximation of (9) is invalid, it is a clever way of preserving information on all

returns that would otherwise be lost if N is large relative to T .

In what follows, we show how to circumvent not only the problem of aggregation but

also the problem of using a log-linear approximation of (9). Start with a system of euler

equations for the unconstrained consumer (19):

Et�1
�
�

u0 (Ct � �Yt)
u0 (Ct�1 � �Yt�1)

Ri;t

�
= 1; i = 1; 2; : : : ; N: (21)

Notice that (21) is a linear function of returns Ri;t, since the conditional expectation Et�1 (�)

is a linear operator and the term in brackets is a linear function of Ri;t. Consider Xt�1, a
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k�vector of instruments, dated in t�1 or before, common to all equations in (21). Centering

(21), post-multiply the result by Xt�1 and use the law of iterated expectations to achieve:

E
��
�

u0 (Ct � �Yt)
u0 (Ct�1 � �Yt�1)

Ri;t � 1
�

Xt�1

�
= 0; i = 1; 2; : : : ; N: (22)

Label now:

h (�; wt; wi;t) =

�
�

u0 (Ct � �Yt)
u0 (Ct�1 � �Yt�1)

Ri;t � 1
�

Xt�1, i = 1; 2; : : : ; N:

where the w�s denote data, and � stacks �, the preference parameters in u0 (�), and, more

importantly, �.

There are N � k orthogonality conditions in (22). If N is large relative to T , estimating

the variance-covariance matrix of sample means will be infeasible, or poorly estimated, even

if it is feasible; see Driscoll and Kraay for a discussion of the latter. If we cross-sectionally

aggregate (22), we obtain:

eh (�) = 1

N

NX
i=1

h (�; wt; wi;t) =

�
�

u0 (Ct � �Yt)
u0 (Ct�1 � �Yt�1)

Rt � 1
�

Xt�1;

where Rt = 1
N

NP
i=1

Ri;t is the cross-sectional average of all returns. Notice that we can still

estimate � by GMM using:

E
neh (�)o = E��� u0 (Ct � �Yt)

u0 (Ct�1 � �Yt�1)
Rt � 1

�

Xt�1

�
= 0; (23)

but now we only have a system of k orthogonality conditions, regardless of the size of N .

An interesting feature of this approach is that estimation is feasible without having to

throw away any information about asset returns. It works for any size of N and even if

N ! 1, at any rate. Moreover, the euler equation behind the moment restrictions in (23)

are interpretable and can be viewed as that of the optimizing representative agent who holds
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an equally-weighted portfolio of traded assets Rt = 1
N

NP
i=1

Ri;t in every period. In a large N

environment, this return will be Rt = plim
N!1

1
N

NP
i=1

Ri;t. If we use deterministic weights f!igNi=1

in aggregating (22), as discussed above, then Rt = plim
N!1

NP
i=1

!iRi;t can be interpreted as a

weighted portfolio.

The way cross-section aggregation of returns works here is in sharp contrast with the

early literature on consumption aggregation of the euler equation; see Browning, Deaton

and Irish (1985), Deaton (1985) and Attanasio and Weber (1995). There, the problem lies

with the fact that � u0(Ci;t)
u0(Ci;t�1)

is a nonlinear function of individual consumption Ci;t, which

generates an aggregation bias for euler equations estimated using aggregate consumption Ct.

Given a choice of u0 (�), we can estimate consistently the structural parameters in (23)

and test H0 : � = 0 by means of a simple wald test. This is exactly the approach taken here.

In what follows, we employ two di¤erent speci�cations for preferences of the uncon-

strained agent in testing rule-of-thumb. The �rst is CRRA (or Power) utility, where:

u (C1;t) =
C1��1;t � 1
1� � =

(Ct � �Yt)1�� � 1
1� � : (24)

The second considers that the optimizing agent has external habit formation (Abel (1990)),

with u (�) as follows:

u
�
C1;t; C1;t�1

�
=
[(Ct � �Yt)�  (Ct�1 � �Yt�1)]1�� � 1

1� � ; (25)

where C1;t�1 is treated parametrically in the optimization problem.

The case where preferences are represented by (25) was studied by Weber. He did not

reject H0 : � = 0, but rejected H0 :  = 0 in favor of the presence of external habit. As we

argue next, the issue of cross-sectional aggregation of returns was not properly taken into
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account by Weber. Indeed, he used the after-tax average yield on new issues of 6 month

Treasury bills. Since the marginal rate of substitution in consumption is only sensible to

systematic changes in real returns, and there is little reason for the real yield of the 6-month

Treasury bill to be a good proxy for these systematic changes, it is interesting to confront

the empirical results in Weber with the ones found here when a proxy for Rt = 1
N

NP
i=1

Ri;t or

Rt =
NP
i=1

!iRi;t is used instead. Indeed, Mulligan argues that �the interest rate in aggregate

theory is not the promised yield on a Treasury Bill or Bond, but should be measured as the

expected return on a representative piece of capital.�

The measure proposed by Mulligan is the return to aggregate capital Rt, or the capital

rental rate (after income and property taxes). To make the case for this measure as stark

as possible, we assume log-utility for preferences �where Mt+i = � Ct
Ct+i

, i = 1; 2; : : :, and

Mt = �
Ct�1
Ct

�as well as no production. Dividends are equal to consumption in every period,

and the price of the portfolio representing aggregate capital pt can be computed with the

usual expected present-value formula:

pt = Et

( 1X
i=1

Mt+iCt+i

)
= Et

( 1X
i=1

�i
Ct
Ct+i

Ct+i

)
=

�

1� �Ct:

Hence, the return on aggregate capital Rt is given by:

Rt =
pt + Ct
pt�1

=
�Ct + (1� �)Ct

�Ct�1
=

Ct
�Ct�1

=
1

Mt

; (26)

which is the reciprocal of Mt.

Equation (26) shows that changes in Rt are associated with intertemporal substitution.

However, changes in individual assets will only be associated with intertemporal substitution

when they re�ect systematic changes in returns.
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3 Empirical Results

3.1 Data

The critical series used in this study is the capital rental rate after income and property

taxes, as computed in Mulligan (2002)4. This series was calculated in annual frequency, from

1947 to 1997. The rest of the data used were extracted from the U.S. National Income and

Product Account (NIPA) and from the US Census Bureau. From NIPA we extracted annual

data for real disposable personal income, real consumption of nondurable and services, and

real consumption of nondurables. To obtain per capita series we used population data from

the US Census Bureau.

3.2 Econometric Issues in GMM Estimation

As in any study employing GMM techniques it is important to choose instruments prop-

erly. Tauchen (1986), Mao (1990), and Fuhrer et al. (1995) have found that GMM performs

better with instrument sets including only a few lags of the observables in the equation being

estimated. As a general rule, we follow this strategy avoiding a weak-instrument problem.

Regardless whether we use (24) or (25) to represent preferences, we must guarantee that

the series in the euler equation are not integrated of order one. Since consumption and

income are known to have roots of the autoregressive polynomial equal (or nearly equal

to) to unity, we transform them to achieve stationarity within the euler equation. In the

context of rule-of-thumb tests, Weber (2002) discusses this issue at some length, dividing

euler equations by speci�c powers of Yt to generate non-integrated terms. These powers

4We thank Casey Mulligan for providing this series to us.
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depend on the form of preferences. Here, we opted for a slightly di¤erent route. For the

preferences in (24) or (25), dividing euler equations by Ct�1 generates terms that have the

following formats: gross growth rates of consumption or income, income-to-consumption or

consumption-to-income ratios, or products of them.

Because we use two possible representations for preferences �(24) or (25) �and either

rule-of-thumb or not (� = 0 or � 6= 0), we estimate four euler equations by GMM. We list

below these four equations in untransformed and transformed formats, where it becomes

apparent the transformations that were performed in order to achieve stationarity. The

stationary ratios are de�ned as: ra1;t � Yt
Ct
; ra2;t � Ct

Ct�1
; ra3;t � Ct

Yt�1
; ra4;t � Yt

Ct�1
; ra5;t �

Ct
Ct�2

; ra6;t � Yt
Ct�2

; ra7;t =
Ct�1
Ct
.

1. Unconstrained agent with external habit and rule-of-thumb in aggregating consump-

tion. The untransformed model is:

Et�1

8>>>>>><>>>>>>:
� [Rt + ] [(Ct � �Yt)�  (Ct�1 � �Yt�1)]��

�Rt�2 [(Ct+1 � �Yt+1)�  (Ct � �Yt)]��

� [(Ct�1 � �Yt�1)�  (Ct�2 � �Yt�2)]��

9>>>>>>=>>>>>>;
= 0:

Collecting terms and multiplying the above equation by 1
Ct�1

gives the following trans-
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formed model5:

Et�1

8>>>>>><>>>>>>:

� [Rt + ]
h
Ct
Ct�1

� � Yt
Ct�1

� 
�
1� � Yt�1

Ct�1

�i��
�Rt�2

h
Ct+1
Ct�1

� � Yt+1
Ct�1

� 
�

Ct
Ct�1

� � Yt
Ct�1

�i��
�
�
1� � Yt�1

Ct�1
� 

��
Ct�1
Ct�2

��1
� �

�
Ct�1
Yt�2

��1����

9>>>>>>=>>>>>>;
= 0: (27)

2. Unconstrained agent with external habit and no rule-of-thumb in aggregating con-

sumption. The untransformed model is:

Et�1

8>><>>:
Rt� (Ct � Ct�1)�� �Rt�2 (Ct+1 � Ct)�� � (Ct�1 � Ct�2)��

+� (Ct � Ct�1)��

9>>=>>; = 0:

Collecting terms and multiplying the above equation by 1
Ct�1

gives the following trans-

formed model:

Et�1

8>><>>:
� [Rt + ]

�
Ct
Ct�1

� 
���

�Rt�2
�
Ct+1
Ct�1

�  Ct
Ct�1

���
�
�
1�  Ct�2

Ct�1

���
9>>=>>; = 0: (28)

3. Unconstrained agent with CRRA utility and rule-of-thumb in aggregating consump-

tion. The untransformed model is:

Et�1

"
�

�
Ct � �Yt

Ct�1 � �Yt�1

���
Rt � 1

#
= 0:

5Notice that:

Ct
Yt�1

=
Ct
Ct�1

� Ct�1
Yt�1

,

Yt
Ct�1

=
Yt
Ct
� Ct
Ct�1

,

Ct
Ct�2

=
Ct
Ct�1

� Ct�1
Ct�2

, and,

Yt
Ct�2

=
Yt
Ct
� Ct
Ct�1

� Ct�1
Ct�2

:
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Dividing the numerator and denominator of Ct��Yt
Ct�1��Yt�1 by Ct�1, gives,

Et�1

8<:�
 

Ct
Ct�1

� � Yt
Ct�1

1� � Yt�1
Ct�1

!��
Rt � 1

9=; = 0 (29)

4. Unconstrained agent with CRRA utility and rule-of-thumb in aggregating consump-

tion. The model is already in stationary form:

Et�1

"
�

�
Ct
Ct�1

���
Rt � 1

#
= 0: (30)

3.3 Log-Linear Models and Diagnostic Tests

Table 1 reports the result of IV estimation of the log-linearized version of the euler

equation following the standard approach �ignoring higher-order terms. We also perform

residual-based speci�cation tests. Two proxies of consumption are used: non durables and

services per capita, and non durables per capita. All estimates of 1=� are precise, and range

from 0:689 to 0:994, which implies a value for � between 1:006 and 1:452. Sargan�s over-

identifying-restriction test does not reject the null for any of the regressions run. Up to now,

our results are in line with those of Mulligan (2002).

In Table 1, residual-based tests (normality, conditional homoskedasticity, serial corre-

lation and independence) show signs of misspeci�cation. At the 5% signi�cance level, all

regressions except one fail the test for independence. At 10%, all regressions fail the test

for independence and all regressions involving non-durable consumption also fail the ARCH

test. Notwithstanding, normality tests show no signs of rejection.

Diagnostic-test results illustrate the basic problem with the log-linear approximation of

the Pricing Equation. If we omit the term 1
�
Et�1 (zt) in running (20), the composite error

term would be a function of lagged observables, therefore cannot be independent. This is
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captured in the results of the BDS tests. If we focus only on second-order terms for the

log-linear approximation, misspeci�cation was captured by ARCH-test results.

Normality and absence of serial correlation are not su¢ cient to guarantee the validity

of the log-linearized model. Second order non-correlation is also required to imply indepen-

dence under normality. However, the failure in ARCH tests are evidence to the contrary6.

In a personal account, Granger (2008) comments that the exact same issue was particularly

important for the birth of ARCH models (Engle (1982)) in relation to the birth of opti-

mizing behavior in consumption (Hall (1978)). As he recalls, �I [suggested that] functions

of uncorrelated series could be autocorrelated... [Hall] had several equations with residuals

having no serial correlation. I suggested ... that the squares of these residuals might not

be white noise... [Using] the same data that Hall had used, [Engle] performed the identical

regressions, obtained the residuals, squared them, and found quite strong autocorrelations.�

Still using the capital rental rate as the aggregate return, we now implement Campbell

and Mankiw�s (1989) procedure in testing for rule-of-thumb behavior. Results are reported

in Table 2. First, we note that (1� �) =� � the coe¢ cient of the aggregate return � is

not signi�cant for any instrument list and consumption measure used here. Income growth

becomes signi�cant when we use more than one lag for instruments. When � is signi�cant,

estimates range from 0:300 to 0:559, in line with the �ndings of Campbell and Mankiw.

Sargan-test results are also line with theirs �the null is never rejected.

6We must stress that we found evidence of heteroskedasticity at the annual frequency. However, log-

linearization of the euler equation is applicable at any frequency. In the literature, some empirical tests

were implemented at a quarterly frequency, where we believe that the evidence of misspeci�cation in testing

would be much stronger.
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Despite these �ndings, diagnostic-test results show signs of misspeci�cation �except for

one regression. The strongest rejections are for the BDS test, although serial correlation and

ARCH tests are also signi�cant for non-durable consumption. As before, the Jarque and

Bera (1987) test does not reject the null of normal errors.

Even discarding diagnostic-test results, since (1� �) =� is insigni�cant in all regressions,

we are back to Campbell and Mankiw�s basic setup: quadratic utility with rule-of-thumb

applying to consumption and income alone. Here, because of the observational equivalence

result in Section 2.2, we cannot conclude that � indeed measures the proportion of rule-of-

thumb agents. It might be an estimate of �ck
�yk
in King, Plosser and Rebelo�s (1988) optimizing

model.

3.4 Non-Linear Models and Rule-of-Thumb Tests

In Table 3, we present results of the general model estimated in Weber (2002), where the

unconstrained agent has external habit and there is rule-of-thumb behavior, i.e., equation

(27). At the 5% signi�cance level, we cannot reject H0 : � = 0 in any estimated regression.

Thus, as in Weber, there is no sign of rule-of-thumb behavior in consumption in the presence

of external habit. However, contrary to Weber�s results, with one exception, we cannot reject

H0 :  = 0 in testing at 5%, which is evidence that there is no habit formation in preferences.

To examine this issue further, we also performed a joint wald test with H0 : (�; )
0 = (0; 0)0,

which presented overwhelming evidence that the null is true. It is also worth noting that

the intertemporal discount rate � is always signi�cant, with estimates ranging from 0:955 to

0:974, and that the relative risk aversion coe¢ cient � is always signi�cant too, with estimates
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ranging from 1:010 to 1:369. Moreover, in all cases, Hansen�s (1982) T �J test did not reject

the implicit over-identifying restrictions.

Table 4 shows the results of estimation of equation (28) � the euler equation for the

unconstrained agent with external habit and no rule-of-thumb in aggregating consumption.

Recall that this speci�cation is the preferred one in Weber�s consumption study, who �nds

empirical support for external habit, but not for rule of thumb. Here, however, the habit

formation parameter  is insigni�cant for all consumption measures and group of instruments,

while the intertemporal discount rate � and the risk aversion coe¢ cient � are signi�cant

everywhere, ranging from 0:956 to 0:966, and 0:790 to 0:958, respectively. Overall, contrary

to Weber�s �ndings, the results in Table 4 show no sign of external habit, since the null that

 = 0 is not rejected anywhere in wald tests. As we stressed before, the use of the capital

rental rate is critical for the latter result. Here, instead of dispensing with information

contained on the set of all returns, we use this information by aggregating returns into the

capital rental rate as computed by Mulligan (2002). Again, Hansen�s (1982) T � J test did

not reject any of the implicit over-identifying restrictions.

Table 5 considers the estimation of equation (29) � unconstrained agent with CRRA

utility and rule-of-thumb in aggregating consumption. There is no sign of rejection for

Hansen�s T � J over-identifying-restriction test. The discount rate � and the risk aversion

coe¢ cient � are both signi�cant everywhere �the �rst ranging from 0:953 to 0:968 and the

second from 0:522 to 1:040. The null that � = 0 is not rejected for any consumption measure

and group of instruments. Overall, results from Tables 3 and 5 show no evidence of rule-of-

thumb behavior. This contrasts with evidence presented by Campbell and Mankiw (1989,

1990) and in most references discussed in Weber.
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The evidence gathered so far suggests that perhaps a reasonable representation for prefer-

ences is an aggregate model with simple CRRA utility without rule-of-thumb in aggregating

consumption. Estimation of this model is reported in Table 6. The discount rate �, and the

risk aversion coe¢ cient � are both signi�cant, ranging from 0:956 to 0:969 and form 0:829

to 1:126, respectively. There is no single rejection for Hansen�s T � J test.

The results in Table 6 for the relative risk-aversion coe¢ cient � are comparable to those

in Mulligan, although the ones obtained here are robust to inconsistencies arising from

omission of higher-order terms in approximating the euler equation. In terms of empirical

results, robustness in this case is critical. If we truly believe in the linear model, and tested

for the existence of rule-of-thumb as was done in Table 2, we would have concluded for

its existence at the 5% level in four out of six cases. Hence, our best estimates for the

importance of rule-of-thumb consumers would range from 0:300 to 0:559, in line with the

�ndings of Campbell and Mankiw for the U.S. economy.

4 Conclusions

Our paper has several original contributions to the literature on consumption optimality.

First, we provide a new result on the basic rule-of-thumb regression, showing that it is obser-

vational equivalent to the one obtained in the optimizing model of King, Plosser and Rebelo

(1988). Second, for tests based on the Asset-Pricing Equation, we show that the omission

of the higher-order term in the log-linear approximation yields inconsistent estimates of the

structural parameters when lagged observables are used as instruments. Although Weber

(2002) also criticizes these tests on di¤erent grounds, our setup o¤ers a much deeper critique

29



of current rule-of-thumb tests. Third, we show that the nonlinear estimation of a system of

N Asset-Pricing Equations can be done e¢ ciently even if the number of asset returns (N)

is high vis-a-vis the number of time-series observations (T ), which prevents system estima-

tion. We argue that e¢ ciency can be restored by aggregating returns into a single measure

that fully captures intertemporal substitution. Indeed, we show that there is no reason why

return aggregation cannot be performed in the nonlinear setting of the Pricing Equation,

since the latter is a linear function of individual returns. Fourth, aggregation of the non-

linear euler equation forms the basis of a new test of rule-of-thumb behavior, which can be

viewed as testing for the importance of rule-of-thumb consumers when the optimizing agent

holds an equally-weighted portfolio of returns or a weighted portfolio of returns. We also

discuss the similarities between the aggregation method proposed here and Mulligan�s (2002)

aggregation leading to the capital rental rate.

Our empirical results are:

1. In Tables 1 and 2, the log-linear tests using an aggregate version of the real return to

wealth �the capital rental rate �show the usual presence of rule-of-thumb behavior in

consumption decisions. However, evidence of the diagnostic tests performed in these

regressions show overwhelming signs of misspeci�cation of the linear model due to

the omission of the higher-order term. This is particularly troublesome since lagged

observables were used as instruments.

2. Non-linear estimation of the aggregate euler equation in Table 3 shows overwhelming

signs that  = 0 (no habit formation) and � = 0 (no rule-of-thumb behavior). When

we test separately these two hypothesis (Tables 4 and 5, respectively), Table 4 shows
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overwhelming signs that  = 0 while Table 5 shows overwhelming signs that � = 0.

3. In Table 6 we consider a non-linear aggregate model without rule-of-thumb behavior

in consumption and without habit formation. The intertemporal discount factor is

signi�cant and ranges from 0:956 to 0:969 while the relative risk-aversion coe¢ cient

is precisely estimated ranging from 0:829 to 1:126. There is no evidence of rejection

in over-identifying-restriction tests. Taken together, our results show no signs of ei-

ther rule-of-thumb behavior for U.S. consumers or of habit-formation in consumption

decisions once proper econometric tests are performed.

It is important to view our empirical optimality results in perspective. The early liter-

ature on consumption found important puzzles such as excess smoothness (sensitivity), the

equity-premium puzzle, and rule-of-thumb behavior; see Hall (1978), Flavin (1981), Hansen

and Singleton (1982, 1983, 1984), Mehra and Prescott (1985), Campbell (1987), Campbell

and Deaton (1989), Campbell and Mankiw (1989, 1990), and Epstein and Zin (1991). These

studies used time-series methods applied to aggregate consumption data and disaggregate

returns. Later, when panel-data methods were applied to household data and disaggregate

returns, the evidence favored optimal behavior; see Runkle (1991), Attanasio and Browning

(1995), Attanasio and Weber (1995), and Dynan (2000). Some of these panel-data studies

proposed an aggregate-bias explanation for the lack of optimality found in early studies. In

a limited linear setting, the work of Mulligan (2002) on cross-sectional aggregation points

towards the importance of aggregating returns to measure intertemporal substitution in a

representative-agent setting, i.e., with aggregate consumption. Our work shows that aggre-

gation can be done using the Asset-Pricing Equation itself, since the latter is nonlinear on
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consumption, but linear on returns. The aggregated Pricing Equation is valid regardless of

the number of assets (N) used in estimation and testing, even if N ! 1 at any rate. It

is equivalent to the euler equation of an optimizing representative consumer who hold an

equally-weighted or weighted portfolio of traded assets. Therefore, whose return to wealth is

Rt =
1
N

NP
i=1

Ri;t or Rt =
NP
i=1

!iRi;t, respectively. When the number assets is large, all idiosyn-

cratic noise vanish in these combinations, since Rt = plim
N!1

1
N

NP
i=1

Ri;t or Rt = plim
N!1

NP
i=1

!iRi;t.

For that reason, the latter two are closely related to intertemporal substitution measured

with aggregate consumption, a property individual returns seem to lack given the evidence

of early studies. Therefore, the message of this paper is that proper return aggregation is

critical to study intertemporal substitution in a representative-agent framework. This in-

volves aggregating the nonlinear euler equation and performing estimation and testing using

it. In this case, we �nd no evidence of lack of optimality.
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A Appendix: Tables

Table 1 - Instrumental-Variable Estimation of

� ln (Ct) =
1
�
ln (�) + �

2
�2� +

1
�
rt + �t

Ct Instruments 1=� Sargan Residual-Test P-values

Proxy � ln (Ct�i) ; Robust Test J.B. HSK S. Corr. BDS

rt�i; � (s.e.) (p-value)

Non-dur. i = 1 0.689 2.337 0.691 0.414 0.129 0.006

and (0.266) (0.126)

Services i = 1; 2 0.741 3.086 0.710 0.430 0.129 0.002

per (0.255) (0.379)

capita i = 1; 2; 3 0.741 3.107 0.710 0.430 0.129 0.002

(0.254) (0.684)

Non-dur. i = 1 0.888 0.002 0.319 0.057 0.214 0.068

per (0.359) (0.966)

capita i = 1; 2 0.994 2.425 0.348 0.057 0.227 0.026

(0.342) (0.489)

i = 1; 2; 3 0.993 2.681 0.348 0.057 0.226 0.026

(0.342) (0.749)

Note: Only 1=� reported. Rt is Mulligan�s (2002) after-tax capital rental rate, rt de�ned in

(20). Robust S.E.s use Newey and West (1987). Residual tests report the smallest p-value. J.B.:

Jarque and Bera�s (1987) test. HSK: Heteroskedasticity test: ARCH test with lags 1 and 2. S.

Corr.: LM serial correlation, with lags 1 and 2. BDS: Brock et al.�s (1996) independence test �

dimensions 2 to 10.
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Table 2 - Instrumental Variable Estimation of:

� ln (Ct) = �� ln (Yt) + (1� �)
�
1
�
ln (�) + �

2
�2� +

1
�
rt

�
+ �t

Ct Instruments (1��)
�

� Sargan Residual-Test P-values

Proxy �, � ln (Ct�i) ; Robust Robust Test J.B. HSK S. Corr. BDS

rt�i;� ln (Yt�i) (s.e.) (s.e.) (p-value)

Non-dur. i = 1 0.496 0.199 2.680 0.797 0.281 0.199 0.200

and (0.322) (0.238) (0.102)

Serv. i = 1; 2 0.389 0.300 3.570 0.844 0.229 0.481 0.000

per (0.264) (0.149) (0.467)

capita i = 1; 2; 3 0.322 0.341 7.183 0.935 0.170 0.729 0.001

(0.255) (0.141) (0.410)

Non-dur. i = 1 0.667 0.238 0.001 0.734 0.022 0.078 0.074

per (0.691) (0.635) (0.980)

capita i = 1; 2 0.361 0.559 0.955 0.616 0.193 0.012 0.019

(0.374) (0.225) (0.917)

i = 1; 2; 3 0.389 0.529 4.264 0.727 0.138 0.024 0.030

(0.348) (0.199) (0.749)

Note: Only (1��)
�

and � reported. In addition, see note in Table 1.
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Table 3 GMM Estimation of Equation (27)

Representative Consumer with Habit Formation and Rule-of-Thumb in Aggregation

Et�1

8>>>>>><>>>>>>:

� [Rt + ]
h
Ct
Ct�1

� � Yt
Ct�1

� 
�
1� � Yt�1

Ct�1

�i��
�Rt�2

h
Ct+1
Ct�1

� � Yt+1
Ct�1

� 
�

Ct
Ct�1

� � Yt
Ct�1

�i��
�
�
1� � Yt�1

Ct�1
� 

��
Ct�1
Ct�2

��1
� �

�
Ct�1
Yt�2

��1����

9>>>>>>=>>>>>>;
= 0:

Consumption Instruments � �  � T � J Wald Test

Measure raj;t�i Robust Robust Robust Robust Test H0:  = � = 0

Rt�i; � (s.e.) (s.e.) (s.e.) (s.e.) (p-value) (p-value)

Non-durable j = 1; 3; 6 0.974 1.369 0.236 0.074 0.004 4.372

and i = 1 (0.015) (0.672) (0.116) (0.123) (0.949) (0.112)

Services j = 1; 2; 3 0.974 1.361 0.240 0.078 0.001 3.562

per i = 1 (0.015) (0.665) (0.129) (0.118) (0.980) (0.168)

capita j = 3; 4; 5 0.972 1.285 0.130 0.0462 0.045 0.518

i = 1 (0.009) (0.452) (0.196) (0.173) (0.832) (0.772)

Non-durable j = 1; 3; 6 0.955 1.033 -0.023 0.103 0.059 1.971

per i = 1 (0.005) (0.370) (0.191) (0.074) (0.808) (0.373)

capita j = 1; 2; 3 0.960 1.041 -0.073 -0.015 0.346 0.325

i = 1 (0.007) (0.316) (0.129) (0.190) (0.556) (0.850)

j = 3; 4; 5 0.959 1.010 -0.277 0.0164 0.258 0.545

i = 1 (0.010) (0.288) (0.397) (0.293) (0.612) (0.762)

Note: Estimated by GMM. Robust S.E. estimates use Newey and West�s (1987) procedure and

pre-whitening. Rt is Mulligan�s (2002) after-tax capital rental rate.
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Table 4 GMM Estimation of Equation (28)

Representative Consumer with Habit Formation and No Rule-of-Thumb in Aggregation

Et�1

8>><>>:
� [Rt + ]

�
Ct
Ct�1

� 
���

�Rt�2
�
Ct+1
Ct�1

�  Ct
Ct�1

���
�
�
1�  Ct�2

Ct�1

���
9>>=>>; = 0:

Consumption Instruments � �  T � J

Measure raj;t�i ; Robust Robust Robust Test

Rt�i; � (s.e.) (s.e.) (s.e.) (p-value)

Non-durable j = 2; 5; 7 0.966 0.958 0.208 1.757

and i = 1 (0.005) (0.232) (0.108) (0.415)

Services j = 2; 5; 7 0.965 0.930 0.140 2.612

per i = 1; 2 (0.004) (0.169) (0.101) (0.856)

capita j = 2; 5; 7 0.964 0.881 0.086 4.527

i = 1; 2; 3 (0.002) (0.106) (0.103) (0.920)

Non-durable j = 2; 5; 7 0.956 0.866 0.058 1.033

per i = 1 (0.002) (0.188) (0.129) (0.597)

capita j = 2; 5; 7 0.957 0.845 -0.026 3.284

i = 1; 2 (0.002) (0.120) (0.113) (0.772)

j = 2; 5; 7 0.956 0.790 -0.080 3.913

i = 1; 2; 3 (0.001) (0.088) (0.105) (0.951)

Note: See note in Table 3.
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Table 5 Instrumental Variable Estimation of Equation (29)

Representative consumer with CRRA Utility and Rule-of-Thumb in Aggregation

Et�1

(
�

�
Ct

Ct�1
�� Yt

Ct�1

1�� Yt�1
Ct�1

���
Rt � 1

)
= 0:

Consumption Instruments � � � T � J

Measure raj;t�i ; Robust Robust Robust Test

Rt�i; � (s.e.) (s.e.) (s.e.) (p-value)

Non-durable j = 1; 2; 4 0.968 -0.160 1.012 1.371

and i = 1 (0.005) (0.262) (0.228) (0.504)

Services j = 1; 2; 4 0.964 -0.048 0.862 4.367

per i = 1; 2 (0.004) (0.130) (0.178) (0.627)

capita j = 1; 2; 4 0.957 -0.072 0.522 4.338

i = 1; 2; 3 (0.003) (0.185) (0.160) (0.931)

Non-durable j = 1; 2; 4 0.958 0.043 1.040 0.378

per i = 1 (0.009) (0.153) (0.394) (0.828)

capita j = 1; 2; 4 0.956 0.004 0.819 2.698

i = 1; 2 (0.003) (0.101) (0.125) (0.846)

j = 1; 2; 4 0.953 -0.081 0.557 6.381

i = 1; 2; 3 (0.001) (0.073) (0.070) (0.782)

Note: See note in Table 3.
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Table 6 Instrumental Variable Estimation of General Equation (30)

Representative consumer with CRRA Utility and No Rule-of-Thumb in Aggregation

Et�1
�
�
�

Ct
Ct�1

���
Rt � 1

�
= 0:

Consumption Instruments � � T � J Test

Measure ra2;t�i ; Rt�i; � Robust Robust (p-value)

(s.e.) (s.e.)

Non-durable i = 1 0.969 1.048 1.458

and (0.006) (0.287) (0.227)

Services i = 1; 2 0.964 0.841 3.276

per (0.004) (0.193) (0.351)

capita i = 1; 2; 3 0.963 0.848 3.900

(0.004) (0.173) (0.564)

Non-durable i = 1 0.960 1.126 0.003

per (0.006) (0.428) (0.954)

capita i = 1; 2 0.956 0.853 1.442

(0.002) (0.138) (0.696)

i = 1; 2; 3 0.956 0.829 1.625

(0.002) (0.114) (0.898)

Note: See note in Table 3.
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