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Abstract

A Bayesian approach to default rate estimation is used to predict default rates on

the basis of information from data and experienced industry experts. The principle

advantage of the Bayesian approach is the potential for coherent incorporation of

expert information - crucial when data are scarce or unreliable. A secondary ad-

vantage is access to efficient computational methods such as Markov Chain Monte

Carlo. The power of this approach is illustrated using annual default rate data

from Moody’s (1999-2009) for two risk buckets and priors elicited from industry

experts. Three structural credit models in the asymptotic single risk factor (ASRF)

class underlying the Basel II framework (Generalized Linear and Generalized Linear

Mixed Models), are analyzed using a Markov Chain Monte Carlo technique. The

predictive distributions for defaults are obtained.

Keywords: Basel II, risk management, prior elicitation, maximum entropy,

MCMC.



1 Introduction

Estimation and prediction of default rates for groups of homogeneous assets (port-

folio ”buckets”) is essential for determining adequate capital. The Basel II (B2)

framework (Basel Committee on Banking Supervision (2006)) for calculating min-

imum regulatory capital requirements provides for banks to use models to assess

credit (and other) risks. Of course, specification of a model requires definition of

parameters or quantities of interest, specification of the parameter space, identifica-

tion of relevant data, and decisions on how these all fit together. Each step requires

judgment and is subject to criticism. Strong justification is required. Indeed this

justification is an important part of the validation procedure expected of financial

institutions (OCC (2000) has been extremely influential; there is new guidance in

OCC (2011)).In response to the credit crisis, the Basel Committee has stressed

the continuing importance of quantitative risk management, see Basel Committee

on Banking Supervision (2009). Our emphasis is on the incorporation of nondata

information and the prediction of defaults, so we focus on elicitation and repre-

sentation of expert information and then on the Bayesian approach to inference in

the context of a series of default-risk models. The first two models are consistent

with the asymptotic single-factor model underlying B2. The third adds temporal

correlation in asset values, generalizing B2. Uncertainty about the default proba-

bility should be modeled the same way as uncertainty about defaults – represented

in a probability distribution. A future default either occurs or doesn’t, given the

definition. Since it is not known in advance whether default occurs or not, it is

conventional to the point of never being questioned to model this uncertain event

with a probability distribution. Similarly, the default probability is unknown. But

there is information available about the default rate in addition to the data infor-

mation. The simple fact that loans are priced and grouped into risk buckets shows
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that some risk assessment is occurring. This information should be organized and

incorporated in the analysis in a coherent way, specifically represented in a proba-

bility distribution. We discuss elicitation briefly in section 2, then run through the

steps of a formal Bayesian analysis. A step-by-step guide to Bayesian analysis in the

default setting, including details on elicitation of expert information, is available in

Jacobs and Kiefer (2010). We then turn to the predictive distributions of defaults.

There is temporal variation in default rates implied by the single-factor model and

there is also some prediction uncertainty due to the fact that Bayesians do not

condition on particular values of unknown parameters, but marginalize over them,

taking account of this uncertainty instead of ignoring it. We apply the approach to

two data sets, one typical of a mid-portfolio bucket of commercial loans, the other

consisting of relatively safe loans (hence fewer defaults and less data information

on default rates). We find that our procedures give sensible, useful results. We also

find that the asset correlations specified by B2 are higher than the data warrant

(though they may be the values that give the appropriate capital levels).

In section 2 we consider elicitation of expert information and its representation

in a probability distribution. We favor the maximum entropy (ME) representation.

In section 3 we describe the sequence of statistical models for the default rates.

Section 4 treats the mid-portfolio application and section 5 the safe portfolio bucket.

Section 6 concludes.

2 Elicitation and Representation of Expert Infor-

mation

Elicitation of prior distributions is an area that has attracted attention. General

discussions of the elicitation of prior distributions are given by Garthwaite, Kadane,
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and O’Hagan (2005), O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson,

Oakley, and Rakow (2006), Cooke (1991), Kadane and Wolfson (1998), and Jacobs

and Kiefer (2010). A stylized representation of elicitation consists of four stages.

First, we prepare for the elicitation by identifying the expert, training the expert

to think in terms of probabilities (in this application, the experts are generally

comfortable with probabilities), and identifying what aspects of the problem to

elicit. Second, we elicit specific summaries of the experts’ distributions for those

aspects. Third, we fit a probability distribution to those summaries elicited in the

second step. Finally, we note that elicitation is in almost all cases an iterative

process, so that the final stage is an assessment of the adequacy of the elicitation,

which leaves open the possibility of a return to earlier stages in order to gather

more summaries from the expert. For example, the fitted prior distribution of the

PD parameter may be presented to the expert, and if the expert is not comfortable

with the shape for whatever reason, we may try to gather more quantiles, re-fit

and return later to make further assessments. We merely sketch the elicitation and

representation of the priors here: details on the mid-portfolio prior are given in a

previous application, Kiefer (2010) and on the low-default prior in Kiefer (2009b).

Step 3, representing elicitated information to a statistical distribution, is often

done by specifying a functional form for the statistical distribution and choosing

parameters to match the elicited information. For example, the Beta distribution

might be chosen to represent prior information on a default rate. We have used

this approach but have come to prefer the ME approach. ME provides a method

to specify the distribution that meets the expert specifications and imposes as little

additional information as possible. Thus, we maximize the entropy (minimize the

information) in the distribution subject to the constraints (indexed by k given by
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the assessments). Entropy (differential) is

H(p) = −
∫

log(p(x))dP

Entropy is a widely used measure of the information in an observation (or an exper-

iment). Further discussion from the information theory viewpoint can be found in

Cover and Thomas (1991). The general framework is to solve for the distribution p

max
p
{−
∫
p ln(p(x))dx} (1)

s.t.

∫
p(x)ck(x)dx = 0 for k = 1, ..., K

and

∫
p(x)dx = 1

In our application the assessed information consists of quantiles. The constraints

are written in terms of indicator functions for the αk quantiles qk; for example the

median constraint corresponds to c(x) = I(x < median)− 0.5. To solve this maxi-

mization problem, form the Lagrangian with multipliers λk and µ and differentiate

with respect to p(x) for each x. Solving the resulting first-order conditions gives

pME(θ) = κ exp{
∑
k

λk(I(θ < qk)− αk)} (2)

The multipliers are chosen so that the constraints are satisfied. For details see Cover

and Thomas (1991) or for an approach not using the Lagrangian Csiszar (1975).

The discontinuities in pME(θ) due to the indicator functions in the exponent

are perhaps unlikely to reflect characteristics of expert information and indeed this
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was the view of the expert. Smoothing was accomplished using the Epanechnikov

kernel with several bandwidths h chosen to offer the expert choices on smoothing

level (including no smoothing). Specifically, with pS(θ) the smoothed distribution

with bandwidth h we have

pS(θ) =

1∫
−1

K(u)pME(θ + u/h)du (3)

with K(u) = 3(1 − u2)/4 for −1 < u < 1. Since the density pME(θ) is defined on

bounded support there is an endpoint or boundary ”problem” in calculating the

kernel-smoothed density estimator. Specifically, pS(θ) as defined in (3) has larger

support than pME(θ), moving both endpoints out by a distance 1/h. We adjust for

this using reflection, pSM(θ) = pS(θ)+pS(a−θ) for a ≤ θ < a+1/h, pSM(θ) = pS(θ)

for a + 1/h ≤ θ < b − 1/h, and pSM(θ) = pS(θ) + pS(2b − θ) for b − 1/h ≤ θ ≤ b.

See Schuster (1985).

3 Models for Defaults: Likelihood Functions

The simplest probability model for defaults of assets in a homogeneous segment of

a portfolio is the Binomial, in which the defaults are assumed independent across

assets and over time, and occur with common probability θ ∈ [0, 1]. This is invari-

ably the starting model for default analysis, and in many cases it is also the final

model. Large institutions will typically go farther. Suppose the value of the ith

asset in time t is

vit = εit

where εit is the time and asset specific shock (idiosyncratic risk) and default occurs if

vit < T ∗, a default threshold value. A mean of zero is attainable through translation
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without loss of generality. We assume the shock is standard normal with distribution

function Φ(·). Let di indicate whether the ith observation was a default (di = 1)

or not (di = 0). The distribution of di is Bernoulli p(di|θ) = θdi(1 − θ)1−di , where

θ = Φ(T ∗). Let D = {di}ni=1 denote the whole data set and r = r(D) =
∑

i di the

count of defaults. Then the joint distribution of the data is

p(D|θ) =
n∏
i=1

θdi(1− θ)1−di (4)

= θr(1− θ)n−r

Since this distribution depends on the data D only through r (n is regarded as

fixed), the sufficiency principle implies that we can concentrate attention on the

Binomial(n,θ) distribution of r

p(r|θ) =
(
n
r

)
θr(1− θ)n−r (5)

This is Model I.

Basel II suggests there may be heterogeneity due to systematic temporal changes

in asset characteristics or to changing macroeconomic conditions. There is some ev-

idence from other markets that default probabilities vary over the cycle. See Nickell,

Perraudin, and Varotto (2000) and Das, Duffie, Kapadia, and Saita (2007). The

B2 capital requirements are based on a one-factor model due to Gordy (2003) that

accommodates systematic temporal variation in asset values and hence in default

probabilities. This model can be used as the basis of a model that allows temporal

variation in the default probabilities, and hence correlated defaults within years.

The value of the ith asset in time t is

vit = ρ1/2xt + (1− ρ)1/2εit (6)
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where εit is the time and asset specific shock (as above) and xt is a common time

shock, inducing correlation ρ ∈ [0, 1] across asset values within a period. The

random variables xt are assumed to be standard normal and independent of each

other and of the εit. The overall or marginal default rate is θ = Φ(T ∗). However,

in each period the default rate θt depends on the systematic factor xt. The model

implies a distribution for θt. Specifically, the distribution of vit conditional on xt

is N(ρ1/2xt, 1 − ρ). Hence the period t default probability (also referred to as the

conditional default probability) is

θt = Φ[(T ∗ − ρ1/2xt)/(1− ρ)1/2]. (7)

The distribution function for θt ∈ [0, 1] is given by

Pr(θt ≤ A) = Pr(Φ[(T ∗ − ρ1/2xt)/(1− ρ)1/2] ≤ A) (8)

= Φ[((1− ρ)1/2Φ−1[A]− Φ−1[θ])/ρ1/2]

using the standard normal distribution of xt and writing θ = Φ(T ∗). Differentiat-

ing gives the density p(θt|θ, ρ). This is the Vasicek distribution, see e.g. Bluhm,

Overbeck, and Wagner (2003) Section 2.5, for details. The parameters are θ, the

marginal or mean default probability and the asset correlation ρ. The conditional

distribution of the number of defaults in each period is (from (5))

p(rt|θt) =
(
nt

rt

)
θrtt (1− θt)nt−rt (9)

from which we obtain the distribution conditional on the underlying parameters

p(rt|θ, ρ) =

∫
p(rt|θt)p(θt|θ, ρ)dθt
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Since different time periods are independent, the distribution for R = (r1, ...rT ) is

p(R|θ, ρ) =
T∏
t=1

p(rt|θ, ρ) (10)

where we condition on (n1, ..., nT ) , i.e. they are considered to be known. Regarded

as a function of (θ, ρ) for fixed R, (10) is the likelihood function. This is Model II.

Model II allows clumping of defaults within time periods, but not correlation

across time periods. This is the next natural extension. It goes beyond models

considered in B2. Specifically, let the systematic risk factor xt follow an AR(1)

process

xt = τxt−1 + ηt

with ηt iid standard normal and τ ∈ [−1, 1]. Now the formula for θt (7) still holds

but the likelihood calculation is different and cannot be broken up into the period-

by-period calculation, cf. (7). Write using (9)

p(R|θ1, ...θT ) =
T∏
t=1

p(rt|θt(xt, θ, ρ))

emphasizing the functional dependence of θt on xt as well as θ and ρ. Now we can

calculate the desired unconditional distribution

p(R|θ, ρ, τ) =

∫
· · ·
∫ T∏

t=1

p(rt|θt(xt, θ, ρ))p(x1, ..., xT |τ)dx1...dxT (11)

where p(x1, ..., xT |τ) is the density of a zero-mean random variable following an

AR(1) process with parameter τ. Regarded as a function of (θ, ρ, τ) for fixed R,

(11) is the likelihood function. This is Model III.

Model I is a very simple example of a Generalized Linear Model (GLM) (Mc-

Cullagh and Nelder (1989)). Models II and III are in the form of the General
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Linear Mixed Model (GLMM), a parametric mixture generalization of the popular

GLM class. These models were analyzed using MCMC in the default application

by McNeil and Wendin (2007) using convenience priors and focussing on default

rate estimation, and by Kiefer (2009a) using an elicited prior and focussing on

predictability of default rates.

4 The Mid-Portfolio Bucket Example

4.1 The Prior

We have asked an expert to consider a portfolio bucket consisting of loans that might

be in the middle of a bank’s portfolio. These are typically commercial loans to un-

rated companies. If rated, these might be about Moody’s Ba-Baa or S&P BB-BBB.

Our expert is an experienced industry (banking) professional with responsibilities

in risk management and other aspects of business analytics. He has seen many

portfolios of this type in different institutions. The expert found it easier to think

in terms of the probabilities directly than in terms of defaults in a hypothetical sam-

ple. This is not uncommon in this technical area, as practitioners are accustomed

to working with probabilities. We focussed on the elicitation of quantiles, as ex-

perience shows these are much easier to think about than moments (small changes

in tails can change moments dramatically). The minimum value for the default

probability was 0.0001 (one basis point). The expert reported that a value above

0.035 would occur with probability less than 10%, and an absolute upper bound was

0.3. The upper bound was discussed: the expert thought probabilities in the upper

tail of his distribution were extremely unlikely, but he did not want to rule out the

possibility that the rates were much higher than anticipated (prudence?). Quartiles

were assessed by asking the expert to consider the value at which larger or smaller
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values would be equiprobable given the value was less than the median, then given

the value was more than the median. The median value was 0.01. The former, the

.25 quartile, was 0.0075. The latter, the .75 quartile, was assessed at .0125. The

expert, who has long experience with this category of assets, seemed to be thinking

of a distribution with a long and thin upper tail but otherwise symmetric. After

reviewing the implications, the expert added a .99 quantile at 0.02, splitting up the

long upper tail. These were fitted and smoothed as described in Section 2.

The prior distribution for θ is shown in Figure 1.

Model 2 requires a prior on the asset correlation ρ. For this portfolio bucket, B2

recommends a value of approximately 0.20. We did not assess further details from

an expert on this parameter. There appears to be little experience with correlation,

relative to expert information available on default rates. There is agreement that

the correlation is positive (as it has to be asymptotically if there are many assets).

Consequently, we choose a Beta prior with mean equal to 0.20 for ρ. Since the B2

procedure is to fix ρ at that value, any weakening of this constraint is a generalization

of the model. We choose a Beta(12.6, 50.4) distribution, with a standard deviation

of 0.05. This prior is illustrated in Figure 2. Thus, the prior specifications on the

parameters for which we have no expert information beyond that given in the B2

guidelines reflect the guidelines as means and little else. The joint prior for θ and ρ

is obtained as the product, which is the maximum-entropy combination of the given

marginals. Here, it does not seem to make sense to impose correlation structure in

the absence of expert information.

As to τ, here we have little guidance. We take the prior to be uniform on [-1,1].

It might be argued that τ is more likely to be positive than negative, and this could

certainly be done. Further, some guidance might be obtained from the literature

on asset prices, though this usually considers less homogeneous portfolios. Here we
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choose a specification that has the standard B2 model at its mean value, so that

allowing for nonzero τ is a strict generalization of existing practice.

4.2 Inference

Writing the likelihood function generically as p(R|φ) with φ ∈ {θ, (θ, ρ), (θ, ρ, τ)}

depending on whether we are referring to the likelihood function (5), (10), or (11),

and the corresponding prior p(φ), inference is a straightforward application of Bayes

rule. The joint distribution of the data R and the parameter φ is

p(R, φ) = p(R|φ)p(φ)

from which we obtain the marginal (predictive) distribution of R,

p(R) =

∫
p(R, φ)dφ (12)

and divide to obtain the conditional (posterior) distribution of the parameter φ :

p(φ|R) = p(R|φ)p(φ)/p(R) (13)

Given the distribution p(φ|R), we might ask for a summary statistic, a suitable

estimator for plugging into the required capital formulas as envisioned by Basel

Committee on Banking Supervision (2006). A natural value to use is the posterior

expectation, φ = E(φ|R). The expectation is an optimal estimator under quadratic

loss and is asymptotically an optimal estimator under bowl-shaped loss functions.

In many applications the distribution p(φ|R) can be difficult to calculate due

to the potential difficulty of calculating p(R) which requires an integration over a
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possibly high dimensional parameter. Here, the dimensions in models 1, 2, and

3 are 1,2, and 3. The first model can be reliably integrated by direct numerical

integration, as can model 2 (requiring rather more time). Model 3 becomes very

difficult and simulation methods are more efficient. Since many applications will

require simulation and efficient simulation methods are available, and since these

methods can replace direct numerical integration in the simpler models as well, we

describe the simulation approach. Here we describe the Markov Chain Monte Carlo

concept briefly and give details specific to our application. For MCMC details see

Robert and Casella (2004).

Markov Chain Monte Carlo methods are a class of procedures for calculating

posterior distributions, or more generally sampling from a distribution when the

normalizing constant is unknown. We consider here a simple case, the Metropolis

method. The idea is to construct a sampling method generating a sample of draws

φ0, φ1, ..., φN from p(φ|R), when p(φ|R) is only known up to a constant. The key

insight is to note that it is easy to construct a Markov Chain whose equilibrium

(invariant, stationary) distribution is p(φ|R). Begin with a proposal distribution

q(φ′|φ) giving a new value of φ depending stochastically on the current value. As-

sume (for simplicity - this assumption is easily dropped) that q(φ′|φ) = q(φ|φ′).

This distribution should be easy to sample from and in fact is often taken to be

normal: φ′ = φ + ε where ε is normally distributed with mean zero and covari-

ance matrix diagonal with elements chosen shrewdly to make the algorithm work.

Then, construct a sample in which φn+1 is calculated from φn by first drawing φ′

from q(φ′|φn) then defining α(φ′, φn) = p(R, φ′)/p(R, φn)∧1 and defining φn+1 = φ′

with probability α(φ′, φn) or φn with probability (1− α(φ′, φn)). Note that p(R, φ)

is easy to calculate (the product of the likelihood and prior). Further, the ratio

p(R, φ′)/p(R, φn) = p(φ′|R)/p(φn|R) since the normalizing constant p(R) cancels.
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The resulting sample φ0, φ1, ..., φN is a sample from a Markov Chain with equi-

librium distribution p(φ|R). Eventually (in N) the chain will settle down and the

sequence will approximate a sequence of draws from p(φ|R). Thus the posterior dis-

tribution can be plotted, moments calculated and expectations of functions of φ can

be easily calculated by sample means. Calculation of standard errors should take

into account that the data are not independent draws. Software to do these calcu-

lations with a user-supplied p(R, φ) exists. We use the the mcmc package (Geyer

(2009)) in R (R Development Core Team (2009)). Guidance and associated warn-

ings are available on the website noted in the package documentation. Generally,

an acceptance ratio of about 25% is good (see Roberts, Gelman, and Gilks (1997)).

The acceptance rate is tuned by adjusting the variances of ε. Long runs are better

than short. There is essentially no way to prove that convergence has occurred,

though nonconvergence is often obvious from time-series plots. For our illustra-

tive application M samples from the joint posterior distribution were taken after a

5000-sample burnin. Scaling of the proposal distribution allowed an acceptance rate

between 22 and 25 percent. Calculation of posterior distributions of the parameters

and the predictive distributions of default rates are based on these samples.

We construct a segment of upper tier high-yield corporate bonds, from firms

rated Ba by Moody’s Investors Service, in the Moody’s Default Risk ServiceTM

(DRSTM) database (release date 1-8-2010). These are restricted to U.S. domiciled,

non-financial and non-sovereign entities. Default rates were computed for annual

cohorts of firms starting in January 1999 and running through January 2009. In

total there are 2642 firm/years of data and 24 defaults, for an overall empirical rate

of 0.00908. The data are shown in Figure 3.

The posterior distributions for this prior and data set were obtained and de-
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Figure 3: Default Rates: Mid-Portfolio application.
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scribed in detail in Jacobs and Kiefer (2010), so we review these calculations briefly

here and turn to the analysis of prediction, not addressed in the earlier paper. The

analysis of the binomial model is straightforward using direct calculations involving

numerical integration to calculate the predictive distribution and various moments

(recall we are not in a conjugate-updating framework due to the flexible form of the

prior representation).

The posterior distribution for the binomial model is shown in Figure 4.

This density has E(θ|R = r = 24) = 0.0098 and σθ = 0.00174.

Model II has asset value correlation within periods, allowing for heterogeneity in

the default rate over time (but not correlated over time) and clumping of defaults.

The marginal posterior distributions are shown in Figures 5 and 6.

This density has E(θ|R) = 0.0105 and σθ = 0.00175. The 95% credible interval

for θ is (0.0073, 0.0140).

This density has E(ρ|R) = 0.0770 and σρ = 0.0194. Note that the prior mean

(0.2) is well outside the posterior 95% confidence interval for ρ. Analysis of the

Vasicek distribution shows that the data information on ρ comes through the year-

to-year variation in the default rates. At θ = 0.01 and ρ = 0.2 the Vasicek distri-

bution implies an intertemporal standard deviation in default rates of 0.015. With

ρ = 0.077, the posterior mean, the implied standard deviation is 0.008. In our sam-

ple, the sample standard deviation is 0.0063. This is the aspect of the data which

is moving the posterior to the left of the prior.

The marginal posterior distributions for Model III are shown in Figures 7-9.

This density has E(θ|R) = 0.0100 and σθ = 0.00176, E(ρ|R) = 0.0812 and

σρ = 0.0185 , and E(τ |R) = 0.162 and στ = 0.0732. Thus, there is some evidence

that the intertemporal correlation parameter tau is positive but not large, broadly

in line with asset pricing theory and evidence.

17



0.004 0.006 0.008 0.010 0.012 0.014

0
50

10
0

15
0

20
0

25
0

Posterior Density: Probability of Default (1−Parameter Model)

θ

D
en

si
ty

Figure 4: Model I, p(θ|R)

18



Posterior Density: Probability of Default (2−Parameter Model)

Moody's Ba Default Rates: Annual Cohorts 1999−2009
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Figure 5: Model II, p(θ|R)
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Figure 6: Model II, p(ρ|R)
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Posterior Density: Probability of Default (3−Parameter Model)

Moody’s Ba Default Rates: Annual Cohorts 1999−2009
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Figure 7: Model III p(θ|R)

20



Markov Chain Monte Carlo Posterior Density: Asset Value Correlation (3−Parameter Model)

Moody's Ba Default Rates: Annual Cohorts 1999−2009
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Figure 8: Model III, p(ρ|R)
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Markov Chain Monte Carlo Posterior Density: Autocorrelation in Systematic Factor (3−Parameter Model)

Moody's Ba Default Rates: Annual Cohorts 1999−2009
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Figure 9: Model III, p(τ |R)
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4.3 Prediction

We obtain the predictive distributions for θT+1 in 2 steps: first, we calculate the

distribution for given values of the parameters - here there is variation due to the

stochastic nature of the model in Models 2 and 3. Then, we marginalize with respect

to the unknown parameters. In Model 1, the Binomial, the default rate is constant

over time so, conditional on parameters, the T + 1 forecast default rate θFT+1 is

simply θ, the known long-run default rate.

In Model 2, the distribution of the default rate θT+1 conditional on η = (θ, τ) is

from 8

Pr(θT+1 < A) = Φ[((1− ρ)1/2Φ−1[A]− Φ−1[θ])/ρ1/2]

and the density p(θT+1|θ, ρ) is obtained by differentiating.

In Model 3 the realized period T default rate is useful in predicting θT+1 because

of the dynamics of the systemic factor x. From 7 we can write

xt = (T ∗ − (1− ρ)1/2Φ−1(θt))ρ
−1/2 (14)

= τ(T ∗ − (1− ρ)1/2Φ−1(θt−1))ρ
−1/2 + εt

Hence

Pr(θt ≤ A|θt−1) (15)

= Pr(Φ[(T ∗ − ρ1/2(τ(T ∗ − (1− ρ)1/2Φ−1(θt−1))ρ
−1/2 + εt))/(1− ρ)1/2] ≤ A)

= Pr(εt < ρ−1/2(Φ−1(A)− T ∗ + τ(T ∗ − (1− ρ)1/2Φ−1(θt−1)))

using the fact that εt is symmetric around zero. This is just a standard normal

integral and the density p(θT+1|θT , θ, ρ, τ)is obtained by differentiation.

Of course, the predictive distribution for θT+1 from Model 1 is simply the pos-
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terior distribution of θ given in Figure 3. Turning to Model 2, the relevant density

is

p(θT+1|R) =

∫∫
p(θT+1|θ, ρ)p(θ, ρ|R)dθdρ

where the definite integrals are over the supports of θ and ρ. This density is shown

in Figure 10. It has E(θT+1|R) =0.010 and σθT+1
=0.010. Thus, even accounting

for parametric uncertainty, incorporating the variation predicted by the one-factor

model increases the prediction standard error relative to the Binomial model by a

factor of 8.

For Model 3 the conditional density (on lagged defaults) is

p(θT+1|θT , R) =

∫ ∫ ∫
p(θT+1|θT , θ, ρ, τ)p(θ, ρ, τ |R)dθdρdτ

where the integrals are definite. This density for the two trial values of lagged θ,

namely 0.004 and 0.015, are graphed in Figures 11 and 12. Summary statistics

are E(θT+1|θT = 0.004, θ, ρ, R) = 0.006 with σθT+1
= 0.004, and E(θT+1|θT =

0.004, θ, ρ, R) = 0.014 with σθT+1
= 0.010.

5 The Low-Default Portfolio Bucket Example

5.1 The Prior

The minimum value for the default probability was 0.0001 (one basis point). The

expert gave quantiles of the distribution of the default probability. A useful device

here is to think about equiprobable events, leading naturally to assessment of the

median value, and then conditionally equiprobable events, leading to the quartiles.

Finer quantiles are a little more difficult, though risk managers are used to thinking

about tail events. After some discussion, the expert reported 0, 0.25, 0.50, 0.75, 0.90,
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Figure 10: Predictive density p(θT+1|R) from Model 2.
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Figure 11: Predictive density p(θT+1|θT = 0.004, R) from Model 3.
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Figure 12: Predictive density p(θT+1|θT = 0.015, R) from Model 3.
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and 1.0 quantiles as 0.0001, 0.00225, 0.0033, 0,025, 0.035, and 0.05.. Our expert

found it much easier to think in terms of quantiles than in terms of moments. As

above, we fit and then smooth a maximum entropy representation.

The data for this section comprise a segment of investment grade corporate

bonds, from firms rated between Baa and Aaa by Moody’s Investors Service, in the

Moody’s Default Risk ServiceTM (DRSTM) database (release date 1-8-2010). As

with the mid-portfolio segment, these are restricted to U.S. domiciled, non-financial

and non-sovereign entities. Default rates were computed for annual cohorts of firms

starting in January 1999 and running through January 2009. In total there are 8905

firm/years of data and 17 defaults, for an overall empirical rate of 0.0019.

The priors for ρ and τ, not developed from experts but in accord with the B2

prescriptions, are as in the mid-portfolio example above.

To be brief, we turn immediately to the predictive distributions, noting that in

model 1 this is the posterior distribution (Figure 15), and in model 2 this is the

marginal posterior distribution for θ (Figure 16).

In model 3 we condition on previous realizations: here we take 10 and 40 basis

points (Figures 17 and 18).

Here the expectation and standard error of θT+1 are 0.0020110 and 0.0017.

Here the expectation and standard error of θT+1 are 0.0015 and 0.0015.

6 Conclusion

In summary, the picture on the default probability is pretty clear: it is around 0.01

in all models for the midportfolio example and around 0.0022 ror the low-default

portfolio. The asset value correlation is around 0.08 for both samples. This is

substantially less than the value specified in B2. This result is coming from the
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Figure 13: Prior for default rate θ from the low-default portfolio.

29



●

●

●

●

● ●

●

● ●

●

●

2000 2002 2004 2006 2008

0.
00

0
0.

00
4

0.
00

8

Time Series

Year

D
ef

au
lt 

R
at

e

0.000 0.005 0.010

0
50

15
0

25
0

Kernel Density

Default Rate

D
en

si
ty

Figure 14: Data: The low-default application.
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Figure 15: Predictive density p(θ|R) from low-default portfolio, model 1.
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Figure 16: Predictive density p(θ|R) from low-default portfolio, model 2.
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Figure 17: Predictive density p(θT+1|θT = 0.001, R) from Model 3.
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Figure 18: Predictive density p(θT+1|θT = 0.004, R) from Model 3.
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E(θ|R) σθ E(ρ|R) σρ E(τ|R) στ

Acceptance 
Rate

Ba 0.00977 0.00174 0.245
Baa‐Aaa 0.00212 0.00047 0.2705
Ba 0.0105 0.00175 0.0770 0.0194 0.228
Baa‐Aaa 0.002241 0.00052 0.0777 0.01855 0.2688
Ba 0.0100 0.00176 0.0812 0.0185 0.162 0.0732 0.239
Baa‐Aaa 0.0023 0.00050 0.0849 0.02286 ‐0.278 0.4898 0.2671

Estimation of Alternative Bayesian Credit Risk Models                       

Binomial (1 
Parameter 
Single Risk 

Factor Basel 2 (2 
Autocorrelated 
Signgle Risk 

Figure 19: Summary statistics: all models.

variation in default rates over time: it is substantially less than that implied by the

B2 specification. Default rates seem to be more predictable than contemplated by

the asset correlations in B2. We have found this in other datasets as well. Note

that this does not mean that the specified value is inappropriate for determining

minimum regulatory capital; only that it is not an accurate representation of pat-

terns in the data. The temporal correlation in the systematic factor is only present

in model III. The evidence is sparse here (recall there are only 11 years of data and

the prior information was as uninformative as possible) but it appears to be slightly

and significantly positive in the mid-portfolio group and essentially undetermined

in the low-default portfolio (recall this is identified from correlation in defaults over

time, and there are few defaults in this group).

In this and related applications the risk modeler and forecaster faces the dual

chore of modeling the data distribution with a specification of a statistical distribu-

tion and modeling expert information with a statistical distribution. We generate

the posterior distributions for the parameters of a nested sequence of models and

calculate predictive distributions for future default rates. We consider a nested
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sequence of models, starting with the binomial, adding asset value correlation as

contemplated by Basel 2, and then adding temporal correlation in the systematic

shock; not contemplated by B2 but appearing in advanced models. The more gen-

eral models provide insight into the extent to which default rates over time are

predictable, and to the extent to which risk calculations should look ahead over a

number of years

References

Basel Committee on Banking Supervision (2006): “International Conver-

gence of Capital Measurement and Capital Standards: A Revised Framework,

Comprehensive Version,” Bank for International Settlements.

(2009): “Proposed enhancements to the Basel II framework: Consultative

Document,” Discussion paper, Bank for International Settlements.

Bluhm, C., L. Overbeck, and C. K. J. Wagner (2003): An Introduction

to Credit Risk Modeling. Chapman & Hall-CRC, Financial Mathematics Series,

London.

Cooke, R. M. (1991): Experts’ in Uncertainty: Opinion and Subjective Probability

in Science. Oxford University Press.

Cover, T. M., and J. A. Thomas (1991): Elements of Information Theory.

John Wiley & Sons.

Csiszar, I. (1975): “I-divergence Geometry of Probability Distributions and Min-

imization Problems,” The Annals of Probability, 3, 146–158.

36



Das, S. R., D. Duffie, N. Kapadia, and L. Saita (2007): “Common Failings:

How Corporate Defaults are Correlated,” Journal of Finance, 62, 93–117.

Garthwaite, P. H., J. B. Kadane, and A. O’Hagan (2005): “Statistical

Methods for Eliciting Probability Distributions,” Journal of the American Sta-

tistical Association, 100, 780–700.

Geyer, C. J. (2009): mcmc: Markov Chain Monte Carlo. R package version 0.6.

Gordy, M. B. (2003): “A Risk-Factor Model Foundation for Ratings-Based Bank

Capital Rules,” Journal of Financial Intermediation, 12, 199–232.

Jacobs, M., and N. M. Kiefer (2010): “The Bayesian Approach to Default

Risk: A Guide,” in Rethinking Risk Measurement and Reporting: Vol II, ed. by

K. Bocker, pp. 319–344. Risk Books.

Kadane, J. B., and L. J. Wolfson (1998): “Experiences in Elicitation,” The

Statistician, 47(1), 3–19.

Kiefer, N. M. (2009a): “Correlated Defaults, Temporal Correlation, Expert In-

formation and Predictability of Default Rates,” Discussion paper, Cornell Uni-

versity.

Kiefer, N. M. (2009b): “Default Estimation for Low Default Portfolios,” Journal

of Empirical Finance, 16, 164–173.

Kiefer, N. M. (2010): “Default Estimation and Expert Information,” Journal of

Business and Economic Statistics, 28(2), 320–328.

McCullagh, P., and J. Nelder (1989): Generalized Linear Models, 2nd ed.

Chapman & Hall, London.

37



McNeil, A. J., and J. P. Wendin (2007): “Bayesian inference for generalized

linear mixed models of portfolio credit risk,” Journal of Empirical Finance, 14,

131149.

Nickell, P., W. Perraudin, and S. Varotto (2000): “Stability of Rating

Transitions,” Journal of Banking and Finance, 24, 203–227.

OCC (2000): “OCC Bulletin 2000-16, Subject: Risk Modeling, Description: Model

Validation,” Discussion paper, Office of the Comptroller of the Currency.

(2011): “OCC Bulletin 2011-12: Supervisory Guidance on Model Risk

Management,” Discussion paper, Office of the Comptroller of the Currency.

O’Hagan, A., C. E. Buck, A. Daneshkhah, J. R. Eiser, P. Garthwaite,

D. J. Jenkinson, J. E. Oakley, and T. Rakow (2006): Uncertain Judge-

ments: Eliciting Experts’ Probabilities. Chichester: John Wiley & Sons.

R Development Core Team (2009): R: A Language and Environment for Sta-

tistical Computing. R Foundation for Statistical Computing, Vienna, Austria,

ISBN 3-900051-07-0.

Robert, C., and G. Casella (2004): Monte Carlo Statistical Methods (2nd

edition). New York: Springer-Verlag.

Roberts, G. O., A. Gelman, and W. R. Gilks (1997): “Weak Convergence

and Optimal Scaling of Random Walk Metropolis Algorithms,” The Annals of

Applied Probability, 7(1), 110–120.

Schuster, E. F. (1985): “Incorporating support constraints into nonparametric

estimators of densities,” Communications in Statistical Theory and Methods, 14,

1123–1136.

38


