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Abstract
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1 Introduction

The last 25 years have witnessed the development of a prolific literature on the relation between

the shape of the sovereign debt yield curve and the main macroeconomic variables. Such relation

— possibly bidirectional — is relevant for policymakers in a twofold sense: first, the information

content of the yield curve may be valuable for the prediction of business cycles, inflation and

monetary policy; second, the response of the yield curve may be informative about the trans-

mission of monetary policy and, overall, the dynamic impact of shocks on the macroeconomy.

Early analyses have focused mainly on the slope of the yield curve shape to forecast output or

inflation. Typically the authors set a priori a number of possible lead horizons for the dynamic

relation between the yield curve and the macro variables, and only infrequently allowed for

bidirectional relations (e.g. Harvey (1988), Stock and Watson (1989), Estrella and Hardouvelis

(1991), Mishkin (1990a, 1990b and 1990c)). Many papers, including recent ones such as Chauvet

and Potter (2005), Benati and Goodhart (2008), and Rudebusch and Williams (2009), have used

empirical proxies for the slope — in some others, also for the level and curvature — that roughly

account for the shape of the yield curve. In such literature, the identification of changes in the

relation between the yield curve and the macroeconomy was based on structural break tests (as

in, e.g., Estrella, Rodrigues and Schich (2003) and Giacomini and Rossi (2006)).

An alternative literature, following Ang, Piazzesi and Wei (2006) — with an arbitrage-free

model — and Diebold, Rudebusch and Aruoba (2006) — with the Nelson and Siegel (1987)

decomposition of the yield curve — has specified macro-finance models in which the shape of

the yield curve is modelled with a set of latent factors that try to distill the whole information

of the curve, at each period of time, into three factors corresponding to the level, slope and

curvature. Such macro-finance vector autoregressive (VAR) models allowed for progress in the

study of the relation between the yield curve and the main macroeconomic variables along

two paths: first, the assessment of bidirectional feedbacks with some flexibility; second, the

assessment of time variation, in the continuous framework of time-varying VARs (see e.g. Ang,

Boivin, Dong and Loo-Kung 2009, Mumtaz and Surico 2009 and Bianchi, Mumtaz and Surico

2009a and 2009b).

The literature so far has been conducted strictly in the time-domain, thus being essentially

uninformative about the frequencies at which the relation between the yield curve components

and the macroeconomic variables occur. Yet, the co-movement between the yield curve shape

and the main macroeconomic variables surely has been subject to time-variation and structural

changes not only as regards its intensity, direction and synchronicity (the lead-lag horizons),

but also as regards to its frequency. Hence the contribution of this paper: we adopt a time-

frequency framework, that is a natural econometric approach to progress in the study of the

relation between the yield curve and the macroeconomy; in particular, we employ wavelet tools,

which are one of the most promising time-frequency methods. To be more, precise, we study the

relation between the level, slope and curvature of the yield curve and macroeconomic activity,
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inflation and the policy interest rate, in the U.S., across time and frequencies, using the wavelet

power spectrum, coherency and phase difference.

To measure the shape of the yield curve, we adopt the Nelson and Siegel (1987) decompo-

sition of the curve into three latent factors — level, slope and curvature —, which has a long

tradition in the finance literature, is model-based, accounts for the whole shape of the curve

and is implemented by means of formal econometric techniques. Studying the yield curve-macro

relation in the time-frequency domain with such a latent factors approach to the yield curve,

rather than using empirical proxies, is a further contribution of the paper.

We reach several conclusions. First, the yield curve level has been determined by the fed

funds rate (FFR) at low frequencies, specially after the outset of Alan Greenspan’s mandate in

1987 at which point the high coherency between these variables moved progressively to cycles

of longer period (larger than 12 years). Inflation has led the yield curve level at business cycle

frequencies (oscillations of period between 4 and 12 years), but only until 1993, when inflation

volatility went down markedly. As expected, the yield curve level has not related closely with

real economic activity, unless this is measured by the unemployment rate — less volatile, more

persistent, and lagging monthly output growth — which has co-moved with the level with some

lag at business cycle frequencies until 2005.

Second, consistent with the monetary policy explanation for the predictive power of the

yield curve slope, the FFR and the slope have significantly co-moved in the same direction

at all cyclical frequencies across most of the sample period, with the slope either leading or

moving contemporaneously. At business cycle frequencies, increases in the slope led increases in

inflation and anticipated recessions with a larger lag — consistent with monetary policy reacting

to expectations of inflation but impacting only with a lag, first on output and then on inflation.

The predictive power of the slope vanished after 1985, when the Great Moderation began, to

reappear in 1990 regarding real activity and in 1993 regarding inflation (but here only at cycles of

4∼8 years and with a considerably smaller lag, which is compatible with more effective inflation

targeting). Since the early 2000s, at the business cycle frequencies, flatter yield curves became

associated with expansions, rather than recessions, which led to the well-known yield curve

conundrum of 2006.

We have not found evidence of a significant role for the curvature either as a leading or

as a coincident indicator of economic activity, nor did we find a clear-cut relation between the

curvature and inflation. However, during the conundrum, the curvature and the slope were good

predictors of the FFR, which indicates that the yield curve may have failed to forecast economic

activity but not monetary policy.

The remaining of the paper is organized in five sections. In the second section we describe the

related literature, showing how its evolution motivates the use of time-frequency methods. In

the third section we present the wavelet analysis tools that are used in the paper. In the fourth

section we present the data, with a special focus on the modeling and estimation of the yield
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curve latent factors. In the fifth section we present and discuss our empirical results. Section

six concludes.

2 Literature overview

In this section we review the literature on the relation between the yield curve and the macro-

economy. We first describe its evolution regarding the set of yield curve components as well as

of macroeconomic variables. We then highlight how time-variation or structural breaks in the

yield curve-macro relation became dominant in the literature and how it has remained silent

about the frequency-domain aspects of the relation, thus establishing the motivations for our

paper. We finally refer to the literature that is closer to our paper, clarifying our contributions.

2.1 The yield curve, output and inflation

The ability of the yield curve slope to predict real activity or inflation has been assessed with

two classes of regression models. On the one hand, discrete (binary) regression models, in which

the dependent variable corresponds to a state of recession or expansion (or to a state of inflation

pressure or no pressure); on the other hand, continuous dependent variable models, in which

the dependent variable is the growth rate of real output (or changes in the rate of inflation). In

some papers, both formulations have, alternatively, been tested and their stability compared —

e.g. Estrella, Rodrigues and Schich (2003), Rudebusch and Williams (2009).

Theoretically, only the expectations component of the term spread should help to predict

business cycles, as its term premium component reflects the demand for higher yields to compen-

sate for the loss of liquidity and the risk associated to holding longer-term securities. However,

Hamilton and Kim (2002) found that both components make statistically significant contribu-

tions, similar at short horizons but larger for the expectations component for predicting output

more than two years ahead (with interest rate volatility explaining part of the contribution of

the term premium component).1

Following the seminal paper by Harvey (1988), the term spread (the yield curve slope, typi-

cally — but not always — measured as the difference between zero-coupon interest rates of 3-month

Treasury bills and 10-year Treasury bonds) has been considered relevant for forecasting business

cycles. Stock and Watson (1989) found that interest rate spreads added value to their multi-

variate index of leading economic indicators. Evidence on the ability of the yield curve slope to

predict real economic activity has then been put forth by, e.g., Estrella and Hardouvelis (1991)

and Estrella and Mishkin (1998) for the U.S. and Estrella and Mishkin (1997) and Plosser and

Rouwenhorst (1994) for several industrialized countries. More recently, it has been shown that

1More recently, Estrella and Wu (2008) found that decomposing the spread into expectations and term
premium components does not significantly enhance the predictive power of the yield curve. Decomposing the
yield slope is beyond the scope of this paper.
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the yield slope has a good record in forecasting recessions in real-time (see e.g. Estrella and Tru-

bin, 2006) and has marginal predictive power for U.S. recessions over the Survey of Professional

Forecasters (Rudebusch and Williams, 2009). The relevance of the yield slope has survived —

and has even been reinforced — in the context of more complex dynamic models and iterative

forecasting procedures (see e.g. Kauppi and Saikonen, 2009).2

As regards inflation, Mishkin (1990a, 1990b and 1990c) and Jorion and Mishkin (1991)

found that the difference between the n-month yield and the m-month yield helped to predict

the change in inflation between n and m months ahead.

While most of the earlier literature has focused on the ability of the yield curve to predict

real activity or inflation, in theory there could be influences in the opposite direction — see e.g.

Estrella (2005) — essentially through the feed-back from the macroeconomy to monetary policy

and its impact on the yield curve. Empirical examination of such effects has been made by, e.g.,

Estrella and Hardouvelis (1991) and Estrella and Mishkin (1997). In the context of VAR models,

Ang and Piazzesi (2003) found evidence that, in the U.S., macro variables explain a large part

of the variation in yields, which Evans and Marshall (2007) confirmed and attributed mostly

to the systematic reaction of monetary policy. In a similar context, Diebold, Rudebusch and

Aruoba (2006) found that, in the U.S., the influence from macroeconomic activity to the yield

curve is stronger than the opposite way around. Overall, there are theoretical and empirical

results that are consistent with a bidirectional relationship.

The literature has recently evolved along two major paths. One has been the enhance-

ment of the yield curve components used to forecast output and, more generally, the build of

macro-finance models with a joint modeling of the yield curve components and the main macro

variables. The other has been the explicit consideration of time-variation in the relation between

the yield curve components and the macro variables. We now discuss these in turn, as both are

crucial motivations for this paper.

2.2 The yield curve latent components and the main macroeconomic

variables

Following the seminal introduction of macroeconomic variables in the standard affine term struc-

ture framework by Ang and Piazzesi (2003), a number of no-arbitrage macro-finance models have

been proposed. These have been used in the analysis of several topics, ranging, for example,

2In spite of the overwhelming evidence, there is still less theoretical agreement about why does the yield curve
slope predict real output fluctuations. Traditional explanations rely either on the effects of monetary policy — see
e.g. Estrella (2005) — or on movements of the real yield curve and their effect on expectations — see e.g. Harvey
(1988).Recently, Kurmann and Otrok (2012) provide evidence that the main drivers of the slope are news about
future total factor productivity (TFP), with the reaction of systematic monetary policy to TFP news being a key
transmission mechanism between TFP news and the slope. In turn, Adrian, Estrella and Shin (2010) suggested
a new causal mechanism deriving from the balance sheet management of financial intermediaries who borrow
short and lend long. Disentangling the theoretical linkages between the yield curve and the macro variables is,
however, beyond the scope of this paper.
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from the prediction of the yield curve — e.g. Hordahl, Tristani and Vestin (2006) — to the role

of inflation expectations in modeling long-term bond yields — e.g. Dewachter and Lyrio (2006)

— and to the analysis of the monetary policy regime and the macroeconomic structure — e.g.

Rudebusch and Wu (2008).3 Closer to our purposes, Ang, Piazzesi and Wei (2006) showed

that, in such a macro-finance model, including the two first principal components of the curve —

corresponding closely to the short interest rate, a proxy for the curve level, and the term spread,

a proxy for its slope — enhances the ability of the model to forecast growth.4

Parallel to the no-arbitrage literature, another branch has explored the parsimonious model-

ing of the yield curve suggested by Nelson and Siegel (1987). First, Diebold and Li (2006) showed

how to estimate the Nelson-Siegel components as time-varying parameters that distill the entire

yield curve shape period-by-period and interpreted them as the level, slope and curvature of

the yield curve. Diebold, Rudebusch and Aruoba (2006) augmented the model with time-series

of inflation, output and the policy interest rate, suggested a state-space representation for such

macro-finance model and estimated it by maximum-likelihood with the Kalman filter.

Following Diebold, Rudebusch and Aruoba (2006), among others, it became relatively con-

sensual to associate the yield curve level to inflation — especially at low frequencies, reflecting a

possible link with inflation expectations —, and the slope to the business cycle. The slope-business

cycle association is not, however, as consensual as the level-inflation association (Moench, 2010

found that innovations to the slope generate immediate but mild and insignificant responses

of real output). As regards the curvature, while Dewachter and Lyrio (2006) suggested it is

associated with monetary policy, its relation with the macroeconomy has been harder to estab-

lish. Recently, while Modena (2008) has suggested that it could be a coincident indicator for

economic activity, Moench (2010) has argued that it is a leading indicator, finding that unex-

pected increases of the curvature factor (higher concavity) precede a flattening of the yield curve

(higher slope) and a significant decline of output more than 1 year ahead.

More recently, Christensen, Diebold and Rudebusch (2009) have specified a generalized no-

arbitrage Nelson-Siegel model of the yield curve, bridging the gap between the two above referred

branches of the macro-finance literature (see also Rudebusch, 2010). However, as Diebold and

Li (2006) and Diebold, Rudebusch and Aruoba (2006) state, it is not clear that arbitrage-

free models are necessary or even desirable for forecasting exercises: if the data abides by

the no-arbitrage assumption, then the parsimonious but flexible Nelson-Siegel curve should at

least approximately capture it; if it’s not, imposing it would depress the model’s ability to

forecast the yield curve and the macro variables. Motivated by these and other additional

3See Diebold, Piazzesi and Rudebusch (2005) for a review of the recent evolution and challenges facing
the macro-finance models. For the inclusion of a yield curve in the new-keynesian dynamic stochastic general
equilibrium models that are currently used for monetary policy conduction and assessment see, e.g., De Graeve,
Emiris and Wouters (2009).

4Wright (2006) confirmed that there is more information in the shape of the yield curve about the probability
of recessions than that provided by the term spread, in the context of probit regression models for predicting
U.S. recessions.
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arguments, as further detailed in section 4, in this paper we follow the parsimonious Nelson-

Siegel decomposition of the yield curve.

2.3 Time-variation in the relation between the yield curve and the

main macroeconomic variables

The possible time-variation in the yield curve-macro relation has been receiving an increased

attention. Initially, within bivariate models of an yield curve factor — generally the slope —

and a macro variable, focusing on changes in the intensity and in the time-lags of the relations

and using structural break tests; recently, within time-varying parameters models; and, very

recently, in the context of macro-finance models.

Stock and Watson (1999) documented econometric instability in the cyclical behavior of

a number of U.S. macroeconomic time-series, including the yield curve slope. Haubrich and

Dombrosky (1996) found that the predictive ability of the yield spread, although very good, has

changed over time. Dotsey (1998) showed that, in contrast to previous periods, the information

content of the slope is not statistically significant between the beginning of 1985 and the end of

1997. Estrella, Rodrigues and Schich (2003) tested for structural breaks in models of the slope

and real output or inflation, for discrete and continuous dependent variable regressions; overall,

they found that models of real output are more stable than models of inflation, and that discrete

regression models are more stable than continuous models of the growth rate of output or the

inflation rate. Using several alternative measures for the yield slope and multiple structural break

tests, Giacomini and Rossi (2006) found a significant breakdown in the forecasting performance

of the slope in 1974-76 and in 1979-87. Kucko and Chinn (2010) compared the ability of the

yield slope to forecast industrial production growth in samples before and after 1999, finding

that overall the predictive ability of the yield slope has decreased after 1998. As Hamilton

(2010) refers, recent anecdotal evidence of instability in the yield curve—macro relation is the

well-known episode of the summer of 2006 when an inverted yield curve was not followed by a

recession, possibly because of the very low level of the curve.

A second line of literature has modeled time-variation with more sophisticated methods, but

has overall remained focused on a single component of the yield curve — the slope — and its

relation to one macro variable. Using Bayesian time-varying parameters VARs with stochastic

volatility, Benati and Goodhart (2008) detected changes in the marginal predictive power of the

yield slope for output growth at several forecast horizons in a number of countries, which have

not always followed the same pattern for alternative forecast horizons. Time-varying parameter

models relating the yield slope with output growth, with ex-post and real-time data, have been

used by Pace (2012) to find a decrease in the marginal predictive power in the recent years in

the U.S. and U.K. and a marked instability of the relation in continental European countries.

Chauvet and Potter (2005) allowed for time-varying parameters and for auto-correlated errors

(to account for the duration of business cycles) in a discrete regression model of the yield slope
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and output growth in the U.S., finding that once such time-variation is considered, inversions of

the yield curve are associated to high probabilities of recessions. In a dynamic bi-factor model

that produces an yield curve cycle and a business cycle, each following its own two-state Markov

switching process, Chauvet and Senyuz (2009) found evidence of time-variation and breaks in

the forecast-horizon at which yields predict output growth.

Very recently, some papers have allowed for time-varying dynamic relations within macro-

finance models, rather than bivariate models. And while some have done so imposing no-

arbitrage restrictions — e.g. Ang, Boivin, Dong and Loo-Kung (2009) — others have pursued

versions of the Nelson and Siegel (1987) parsimonious yield curve model — e.g. Mumtaz and

Surico (2009) and Bianchi, Mumtaz and Surico (2009a, 2009b).

2.4 Time and frequency variation in the relation between the yield

curve and the macroeconomy: the Wavelet approach

Having devoted most of the effort to tackling time-variation issues, the literature has remained

silent on the frequencies (cyclical periodicity) at which the relation between the yield curve

components and the macroeconomic variables occurs. Yet, given the changes in the structure

of the economy and in the monetary policy regimes, there surely may have been frequency

variations in the yield curve—macro relation.

Overall, progress in the study of the yield curve-macro relation may be pursued with a

framework that (i) considers the whole yield curve shape (level, slope, curvature), (ii) allows

for time-varying sensitivity and lead/lags, and (iii) allows for time-varying frequencies. The

continuous time-frequency framework thus emerges as an approach with unique advantages to

study this topic.

Against this background, we use wavelet analysis tools — previously employed by Aguiar-

Conraria, Soares and Azevedo (2008) and Aguiar-Conraria and Soares (2011a) — to disentangle

the time-frequency relations between the 3 Nelson-Siegel latent factors of the yield curve (level,

slope and curvature) and 4 macroeconomic variables (unemployment, an index of macroeconomic

activity, inflation and the monetary policy interest rate) in the U.S. Following analyses using the

wavelet power spectrum, we then compute the cross-wavelet transform and coherence as well as

the phase difference. For each pair formed by a yield curve factor and a macroeconomic variable,

these tools give us quantified indications of, respectively, the similarity of power between each

time series and a measure of the lead-lags between their oscillations, at each time and frequency.

These wavelet tools provide a thorough vision of the inter-relation between the yield curve

components and the macro variables that is almost impossible to obtain with purely time-

domain or frequency-domain analysis.
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3 Wavelets Analysis

This section presents a (necessarily very brief) introduction to wavelet analysis. If interested

in a detailed technical overview the reader can check Aguiar-Conraria and Soares (2011b). For

a thorough intuitive discussion on these concepts, the reader is referred to Aguiar-Conraria,

Magalhães and Soares (2012).

3.1 The Wavelet

A function ψ qualifies for being a mother wavelet only if ψ is a square integrable function and

also if it fulfills a technical condition, usually referred to as the admissibility condition. For most

of the applications, the wavelet ψ must be a well localized function, both in the time domain and

in the frequency domain, in which case the admissibility condition reduces to requiring that ψ

has zero mean, i.e.
�
∞

−∞
ψ (t) dt = 0. This means that the function ψ has to wiggle up and down

the t−axis, i.e. it must behave like a wave; this, together with the assumed decaying property

justifies the choice of the term wavelet (small wavelet) to designate ψ.

3.1.1 The Continuous Wavelet Transform

Starting with a mother wavelet ψ, a family ψτ,s of “wavelet daughters” can be obtained by

simply scaling and translating ψ:

ψτ,s (t) :=
1

�
|s|

ψ

�
t− τ

s

�
, s, τ ∈ R, s �= 0, (1)

where s is a scaling or dilation factor that controls the width of the wavelet and τ is a translation

parameter controlling the location of the wavelet. Scaling a wavelet simply means stretching it

(if |s| > 1) or compressing it (if |s| < 1), while translating it simply means shifting its position

in time. Given a time series x (t), its continuous wavelet transform with respect to the wavelet

ψ is a function of two variables, Wx (τ , s) :

Wx (τ , s) =

�
x (t)

1
�
|s|

ψ

�
t− τ

s

�
dt, (2)

where the bar denotes complex conjugation.

3.1.2 The Choice of the Mother Wavelet

There are several types of wavelet functions available with different characteristics, such as,

Morlet, Mexican hat, Haar, Daubechies, etc. Since the wavelet coefficients Wx (s, τ ) contain

combined information on both x (t) and ψ (t), the choice of the wavelet is an important aspect

to be taken into account, which will depend on the particular application one has in mind.
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If quantitative information about phase interactions between two time-series is required, con-

tinuous, rather than discrete, and complex wavelets provide the best choice. When the wavelet

ψ(t) is chosen as a complex-valued function, the wavelet transform Wx(τ , s) is also complex-

valued. In this case, the transform can be separated into its real part, ℜ(Wx), and imaginary

part, ℑ(Wx), or in its amplitude, |Wx(τ , s)|, and phase, φx(τ , s) : Wx(τ , s) = |Wx(τ , s)| e
iφx(τ,s).

The phase-angle φx(τ , s) of the complex number Wx(τ , s) can be obtained from the formula:

tan(φx(τ , s)) =
ℑ(Wx(τ,s))
ℜ(Wx(τ,s))

, using the information on the signs of ℜ(Wx) and ℑ(Wx) to determine

to which quadrant the angle belongs to.

Analytic wavelets5 are ideal for the analysis of oscillatory signals, since the continuous ana-

lytic wavelet transform provides an estimate of the instantaneous amplitude and instantaneous

phase of the signal in the vicinity of each time/scale location (τ , s).

Therefore, for our applications it is essential to choose a complex analytic wavelet, as it yields

a complex transform, with information on both the amplitude and phase, crucial to study the

cycles synchronism. Examples of popular analytic wavelets are the Paul, Gaussian, Morlet, and

Shannon mother wavelets. The Morlet wavelet has one major property: it has optimal joint

time-frequency concentration.6

For all these reasons we will use the Morlet wavelet, first introduced in Goupillaud et al.

(1984):

ψω0 (t) = π−
1

4 eiω0te−
t
2

2 . (3)

All our numerical results are obtained with the particular choice ω0 = 6. For this parame-

trization of the Morlet wavelet, there is an inverse relation between wavelet scales and frequen-

cies, f ≈ 1
s
, greatly simplifying the interpretation of the empirical results. Thanks to this very

simple one-to-one relation between scale and frequency we can use both terms interchangeably.

3.2 Wavelet Tools

In analogy with the terminology used in the Fourier case, the (local) wavelet power spectrum

(sometimes called scalogram or wavelet periodogram) is defined as

(WPS)x(τ , s) = |Wx(τ , s)|
2 . (4)

This gives us a measure of the variance distribution of the time-series in the time-scale/frequency

plane.7

5A wavelet ψ(t) is analytic if its Fourier transform is such that ψ̂(f) = 0, for f < 0.
6Theoretically, the time-frequency resolution of the continuous wavelet transform is bounded by the Heisenberg

box, which describes the trade-off relationship between time and frequency. The area of the Heisenberg box is
minimized with the choice of the Morlet wavelet.

7Sometimes the wavelet power spectrum is averaged over time for comparison with classical spectral methods.
When the average is taken over all times, we obtain the global wavelet power spectrum, (GWPS)x(s, τ) =�∞
−∞ |Wx(τ , s)|

2 dτ.
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The concepts of cross wavelet power, wavelet coherency and phase difference are natural

generalizations of the basic wavelet analysis tools that enable us to deal with the time-frequency

dependencies between two time-series. The cross-wavelet transform of two time-series, x(t) and

y(t), is defined as

Wxy (τ , s) = Wx (τ , s)Wy (τ , s) , (5)

where Wx and Wy are the wavelet transforms of x and y, respectively. We define the cross wavelet

power, as |Wxy(τ , s)|. The cross-wavelet power of two time-series depicts the local covariance

between two time-series at each time and frequency. Therefore, the cross-wavelet power gives

us a quantified indication of the similarity of power between two time-series. When compared

with the cross wavelet power, the wavelet coherency has the advantage of being normalized by

the power spectrum of the two time-series. In analogy with the concept of coherency used in

Fourier analysis, given two time-series x(t) and y(t) one defines their wavelet coherency:

Rxy (τ , s) =
|S (Wxy (τ , s))|�

S (|Wxx (τ , s)|)S (|Wyy (τ , s)|)
,

where S denotes a smoothing operator in both time and scale.

Although there is some work done on the theoretical distribution of the wavelet power (Ge,

2007) and on the distribution of cross wavelets (Ge, 2008), the available tests imply null hy-

potheses that are too restrictive to deal with economic data. Therefore, we will rely on Monte

Carlo simulations for statistical inference.

Figure 1: Phase-difference relations

As we have discussed, one of the major advantages of using a complex-valued wavelet is

that we can compute the phase of the wavelet transform of each series and thus obtain infor-

mation about the possible delays of the oscillations of the two series as a function of time and

scale/frequency, by computing the phase difference. The phase difference can be computed from
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the cross wavelet transform, by using the formula

φx,y(s, τ ) = tan
−1

�
ℑ (Wxy(s, τ ))

ℜ (Wxy(s, τ ))

�
, (6)

and information on the signs of each part to completely determine the value of φxy ∈ [−π, π]. A

phase difference of zero indicates that the time series move together at the specified frequency;

if φxy ∈ (0,
π
2
), then the series move in phase, but the time-series x leads y; if φxy ∈ (−

π
2
, 0),

then it is y that is leading; a phase difference of π (or −π) indicates an anti-phase relation; if

φxy ∈ (
π
2
, π), then y is leading; time-series x is leading if φxy ∈ (−π,−π

2
). In the course of this

paper the interpretation of the phase difference is the one suggested in Figure 1.

With the phase difference one can calculate the instantaneous time lag between the two

time-series:

∆T (s, τ ) =
φx,y (s, τ )

2πf (τ)
, (7)

where f (τ) is the frequency that corresponds to the scale τ .

As with other types of transforms, the continuous wavelet transform applied to a finite length

time-series inevitably suffers from border distortions; this is due to the fact that the values of the

transform at the beginning and the end of the time-series are always incorrectly computed, in the

sense that they involve missing values of the series which are then artificially prescribed. When

using a discretized version of formula (2), a periodization of the data is assumed. However, we

pad the series with zeros, to avoid wrapping. These edge-effects are larger at lower frequencies.

The region in which the transform suffers from these edge effects is called the cone of influence.

In this area of the time-frequency plane the results are subject to border distortions and have

to be interpreted carefully.

4 Data and Estimation

In this section we present the data used in our wavelet analyses. In a first subsection we describe

the source of the zero-coupon yield data and then the modeling choices made to estimate the

latent factors that define the shape of the yield curve at each moment. In a second subsection

we present the macroeconomic data. For each of our seven time-series, we provide and analyze

their wavelet power spectrum, which is a useful preliminary information.

4.1 Yield data and the yield curve latent factors

At each point in time, the yield curve is the set of yields of zero-coupon Treasury securities for

each residual maturity. As, in practice, the Treasury issues a limited number of securities with

different maturities and coupons, obtaining the yield curve at each moment requires estimation,

i.e. inferring what the zero-coupon yields would be across the whole maturity spectrum. Yield
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curve estimation requires the assumption of some model for the shape of the yield curve, so

that the gaps may be filled in by analogy with the yields seen in the observed maturities. Once

a model is selected, estimates of its coefficients are chosen so that the weighted sum of the

squared deviations between the actual prices of Treasury securities and their predicted prices is

minimized. Once the values for the coefficients are estimated, they may be straightforwardly

used to obtain the notional zero-coupon yields for the residual maturities absent from the raw

data.8

In this paper we use U.S. yield curve data for 1961:6-2011:12 publicly made available by

Gurkaynak, Sack and Wright (2007b). These data are estimated with an approach that follows

the extension by Svensson (1994) of the functional form originally suggested by Nelson and Siegel

(1987). The online database Gurkaynak, Sack and Wright (2007b) provides regularly updated

daily zero-coupon yields for all yearly maturities from 1 to 30 years and has been increasingly

used in recent research (see e.g. De Graeve, Emiris and Wouters, 2009, and Chauvet and Senyuz,

2009).

Given our purpose of relating the yield curve with macro variables, we are not interested

in daily but rather in monthly yield curve data, therefore we use average monthly yield data.

Following the literature, we are not interested in the very-long end of the yield curve (maturities

above 10 years), while, in contrast, we are interested in a richer set of yield curve points for

short and medium term residual maturities than those present in Gurkaynak, Sack and Wright

(2007b). Accordingly, we use the appropriate formulae and parameters in Gurkaynak, Sack

and Wright (2007a, 2007b) and compute the implied zero-coupon yields for a set of additional

relevant intra-year maturities. We end up with monthly-average time-series of zero-coupon yields

for the 17 maturities considered in Diebold, Rudebusch and Aruoba (2006): 3, 6, 9, 12, 15, 18,

21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.

We then use these yield curve data to estimate the yield curve latent factors — level, slope and

curvature —, following the parsimonious Nelson and Siegel (1987) approach to the modeling of

the yield curve used by e.g. Diebold and Li (2006) and Diebold, Rudebusch and Aruoba (2006).

Our choice of not following an arbitrage-free approach is motivated by two main arguments.

First, as Diebold and Li (2006, pp. 361-362) and Diebold, Rudebusch and Aruoba (2006, pp.

333) argued, for empirical exercises, the actual data are more relevant than data made consistent

with theoretical models that preclude behaviors possibly present in the real world: if the market

behavior by agents generates arbitrage-free data, then the flexible Nelson-Siegel curve should

capture that feature of the data reasonably well; if agents do not completely exploit arbitrage

opportunities, it is reasonable to expect that the resulting non-arbitrage-free data are the data

that should correlate with the macroeconomic variables actually observed in the economy. It is

true that Diebold and Li (2006) and Diebold, Rudebusch and Aruoba (2006) have put forth the

argument for forecasting exercises, however our empirical analyses may be seen as a preliminary

8Typically, yield curve estimation further requires filtering out some issues that have insignificant liquidity,
due to small outstanding amounts or residual life. See Gurkaynak, Sack and Wright (2007a) for additional details.
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step of forecasting exercises, given that we focus on detecting co-movements between the yield

curve and the macroeconomic variables with possible leads and lags. Second, the zero-coupon

yield data that is the basis for this research has been computed with a variant of the Nelson

and Siegel (1987) model; for example, its formulae and coefficients are used to interpolate the

time-series of yields when, for any residual maturities, no quoted prices have been formed or

the market prices resulted from very illiquid markets; while not compulsory, we find it valuable

that the estimation of the latent factors of the yield curve is based on a model that is consistent

with the one used in the computation of the original time-series of zero-coupon yields.

The yield curve is modeled with the three-component exponential approximation to the

cross-section of yields at any moment in time proposed by Nelson and Siegel (1987),

y (τ ) = β1 + β2

�
1− e−λτ

λτ

�
+ β3

�
1− e−λτ

λτ
− e−λτ

�
(8)

where y (τ ) denotes the set of (zero-coupon) yields and τ denotes the corresponding maturity.

Following Diebold and Li (2006) and Diebold, Rudebusch and Aruoba (2006), the Nelson-

Siegel representation is interpreted as a dynamic latent factor model where β1, β2 and β3 are

time-varying parameters that capture the level (L), slope (S) and curvature (C) of the yield curve

at each period t, while the terms that multiply the factors are the respective factor loadings:

y (τ) = Lt + St

�
1− e−λτ

λτ

�
+ Ct

�
1− e−λτ

λτ
− e−λτ

�
. (9)

Lt may be interpreted as the overall level of the yield curve, as its loading is equal for

all maturities; St has a maximum loading (equal to 1) at the shortest maturity, which then

monotonically decays through zero as maturities increase; Ct has a loading that is null at

the shortest maturity, increases until an intermediate maturity and then falls back to zero

as maturities increase. Hence, St and Ct may be interpreted as the short-end and medium-term

latent components of the yield curve, with the coefficient λ ruling the rate of decay of the loading

towards the short-term factor and the maturity where the medium-term factor has maximum

loading. Some authors use, instead, empirical proxies to these factors. We prefer the latent

factors approach, not only because it is based on a formal model, facilitating the economic

interpretation, but also because it uses the information across the whole yield curve maturities.9

As in Diebold, Rudebusch and Aruoba (2006) we assume that Lt, St and Ct follow a vector

autoregressive process of first order, which allows for casting the yield curve latent factor model

in state-space form and using the Kalman filter to obtain maximum-likelihood estimates of the

hyper-parameters and the implied estimates of the time-varying parameters Lt, St and Ct.

9Note that the empirical measures only use information on three different maturities: Levelt =
(yt (3) + yt (24) + yt (120)) /3, Slopet = yt (3) − yt (120) , Curvaturet = − (yt (3) + yt (120)) + 2yt (24) , where
yt (m) refers to the zero coupon yield of maturity m.
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The state-space form of the model comprises the transition system






Lt − µL

St − µS

Ct − µC




 =






a11 a12 a13

a21 a22 a23

a31 a32 a33











Lt−1 − µL

St−1 − µS

Ct−1 − µC




+






ηt (L)

ηt (S)

ηt (C)




 , (10)

where t = 1, . . . ..T is the sample period, µL, µS and µC are estimates of the mean values of the

three latent factors, and ηt (L), ηt (S) and ηt (C) are innovations to the autoregressive processes

of the latent factors.

The state-space form further comprises the measurement system, relating a set of N observed

zero-coupon yields of different maturities to the three latent factors by






yt (τ1)

yt (τ2)
...

yt (τN)





=






1
�
1−e−λτ1
λτ1

 �
1−e−λτ1
λτ1

− e−λτ1


1
�
1−e−λτ2
λτ2

 �
1−e−λτ2
λτ2

− e−λτ2


...
...

...

1
�
1−e−λτ3
λτ3

 �
1−e−λτN
λτN

− e−λτN












Lt

St

Ct




+






εt (τ 1)

εt (τ 2)
...

εt (τN)





, (11)

where t = 1, . . . , T , and εt (τ1) , εt (τ2) , . . . εt (τN) are measurement errors, i.e. deviations of the

observed yields at each period t and for each maturity τ from the implied yields defined by the

shape of the fitted yield curve. In matrix notation, the state-space form of the model may be

written, using the transition and measurement matrices A and Λ, as

ft − µ = A (ft−1 − µ) + ηt (12)

yt = Λft + εt (13)

For the Kalman filter to be the optimal linear filter, it is assumed that the initial conditions

set for the state vector are uncorrelated with the innovations of both systems: E
�
ftη

T
t

�
= 0 and

E
�
ftε

T
t

�
= 0.

Following Diebold, Rudebusch and Aruoba (2006) we assume that the innovations of the

measurement and of the transition systems are white noise and mutually uncorrelated

�
ηt

εt

�

∼WN

��
0

0

�

,

�
Q 0

0 H

��

, (14)

where the matrix of variance-covariance of the innovations to the transition system Q is unre-

stricted, while the matrix of variance-covariance of the innovations to the measurement system

H is assumed to be diagonal. The latter assumption means that the deviations of the observed

yields from those implied by the fitted yield curve are uncorrelated accross maturities and time.

Given the large number of observed yields used, this is necessary for computational tractability
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(Diebold, Rudebusch and Aruoba 2006). Moreover, it is also a quite standard assumption, as,

for example, i.i.d. errors are typically added to observed yields in estimating no-arbitrage term

structure models.

Given a set of starting values for the parameters (the three latent factors) and for the hyper-

parameters (the coefficients that define the statistical properties of the model, such as, e.g., the

variances of the innovations), the Kalman filter may be run from t = 2 through t = T and

the one-step-ahead prediction errors and the variance of the prediction errors may be used to

compute the log-likelihood function. The function is then iterated on the hyper-parameters with

standard numerical methods and at its maximum yields the maximum-likelihood estimates of

the hyper-parameters and the implied estimates of the time-series of the time-varying parameters

Lt, St and Ct. The latent factors are then recomputed with the Kalman smoother, which uses

the whole dataset information to obtain the factors at each period from t = T through t = 2

(see Harvey, 1989, for details on the Kalman filter and the fixed-interval Kalman smoother).

The resulting time-series, which are depicted in the left-hand-side panel of Figure 2, are

those subject to the cross wavelet analyses of the next section, jointly with the macroeconomic

data described in the next sub-section. 10

The figure further includes (right-hand-side panel) the power spectrum of each of the latent

factors.11 It indicates, for each moment of time the intensity of the variance of the time-series

for each frequency of cyclical oscillations. While it is computed exclusively with the information

contained in the time-series (left-hand-side panel), it maps it into the time-frequency domain.

Before moving to the study of bivariate relations, the wavelet spectra provide a first assessment

of the individual behavior of the data in this time and frequency varying framework.

Until 1990, the yield level records a very high variance for long cycles, in frequency bands

from 10 to 16 years, which confirms its high persistence and apparent low volatility. Overall,

the power spectrum is statistically significant for frequency bands below 8 years throughout the

whole sample period, thus indicating a significant variance for such long cycles. In the 1980s,

there is a region of significant power at a frequency band between 3 and slightly more than

4 years, which matches the intense short-run cyclical oscillations of the level apparent in the

time-series plot during that period, probably associated with the active management of interest

10Recall that, by construction, negative values of the slope correspond to the typical upward sloping yield curve
(positive values of the slope correspond to inverted yield curves) and thus most of the times the slope factor is
negative. In turn, positive, null and even (in most cases) small negative values of the curvature correspond to
the typical concave yield curve; below some negative value (which is a function of the value of the slope) the
yield curve turns into a convex curve. In short, the lower the value of the slope, the steeper is the yield curve;
the lower the value of the curvature, the less concave is the yield curve.

11Our wavelet figures throughout the paper depict the power at each time-frequency region associating colder
colors (in the extreme, blue) with low power and hotter colors (in the extreme, red) with higher power. The dark
lines represent regions of statistically significant powers at 5 percent, while grey lines delimit regions significant
at 10 percent. Significance levels have been obtained by bootstraping with 5000 replications. The white stripes
show the maxima of the undulations of the wavelet power spectrum. The cone of influence is shown with a black
line. This indicates the region affected by edge effects and where caution should be applied when interpreting
the evidence.
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rates to disinflate the economy while managing the business cycle initiated after the monetarist

experiment of 1979-82, which followed the oil crises, and subsequent inflationary pressures, of

the 1970s.12

Figure 2: Level, Slope and Curvature of Yield Curve, U.S. 1961:7-2011:12

The power spectrum of the slope is statistically significant at 5 percent throughout the whole

sample for frequency bands that correspond to cycles of period above 4 years, indicating that

the variance of the slope is significant at business cycles frequencies, as expected under the

monetary policy explanation of the relation between the slope and the macroeconomy. The

time-frequency regions with higher values for the power spectrum have occurred since the mid-

1970s at frequencies around 8 years, becoming stronger after 1980.

The power spectrum of the curvature displays a pattern somewhat similar to the slope, as the

variance of the series is statistically significant for cycles of period above 4 years throughout all

the sample. The peaks of the power spectrum are less concentrated, in the case of the curvature.

In fact, a very high power is detected during the 1970s and 1980s at a frequency band of between

6 and 8 years, but also, since mid-1970s, at a band centered on 12 years — which then gradually

moves to a band that approaches the 16 year frequency and is visible until the end of the sample.

12Given that, at this point, we are just performing univariate analysis, we cannot statistically infer the causes
of these regions of high volatility. We do, however, interpret these regions based on previous results from the
literature. Of course, other economists may have alternative interpretations. This remark is valid for all our
interpretations of the pictures of subsections 4.1 and 4.2.
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4.2 Macroeconomic data

Our macroeconomic data include two variables meant to proxy for real output (the civilian

unemployment rate, and an index of economic activity), a measure of price inflation (yearly per

cent changes of the Consumer Price Index) and a measure of the monetary policy interest rate

(the Effective Federal Funds Rate). With the exception of the economic activity index, the data

have been downloaded from the St. Louis Fed website (FRED database).

Given that real GDP is not observed monthly, we must proxy it with alternative monthly

indicators. One obvious candidate is the unemployment rate, but it is well known that it

lags behind real GDP growth and that it features less volatility and higher persistence than

quarterly real output growth. Given the relevance of timing issues in our empirical analyses,

we decide not to rely only on the unemployment rate as indicator of real economic activity,

but rather use it as complementary to a coincident index of real economic activity. A possible

monthly indicator of economic activity would be the industrial production index. However this

indicator is rather limited in its coverage of the overall economic activity — especially as the

U.S. increasingly developed non-industrial activities since the 1980s. Another possible indicator

would be the Chicago Fed National Activity Index (CFNAI). Unfortunately, there is no data

for this indicator before 1967, so using it would imply missing a significant amount of data.

All considered, we chose to use the Aruoba Diebold Scotti Index (ADS index, see Aruoba,

Diebold and Scotti, 2009), available from the Philadelphia Fed website. This is a coincident

index estimated in real-time with six macroeconomic monthly indicators that is available for

all our sample period and has been increasingly used in recent research (see the index website

for details on its construction). The contemporaneous correlation between the CFNAI and the

ADS is above 94% (lagged correlations are smaller), indicating that they are close substitutes.

The (negative) correlation between the ADS and the unemployment rate is maximized for a lag

of about a year, which is in line with the lag between GDP growth and unemployment, and is

a feature of the data that must be taken into consideration for a proper interpretation of our

empirical results obtained in the next section.

Figure 3 presents the time-series of our macroeconomic variables, as well as their wavelet

power spectrum, showing their behavior in the time-frequency space.

The wavelet power spectrum of the unemployment rate is, overall, statistically significant

during most of the sample period for cycles of periodicity higher than 4 years. Around the

first oil shock, the power is significant also at cycles of smaller periodicity, a pattern that is

also evident in the first half of the 1980s, during the bulk of the disinflation. As regards the

time-frequency regions with higher power, one can identify a peak in the 8∼12 frequency band,

from 1970 until 2000. Around the 6 year frequency, we observe two peaks, one in the middle

and the second half of the 1970s, coinciding with the oil crises, and another in the second half

of the first decade of the new millennium, coinciding with the financial and economic crisis.

At business cycle frequencies, the wavelet power spectrum of the index of economic activity
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ADS was not high in the decade of 1960. After that, during the decade of 1970 and in early

1980s, the variance at the business cycle frequency was quite high again, probably as a result

of the severe oil crisis that hit the world economy in 1973 and 1979 and lasted until the early

1980s. These results for the macroeconomic volatility in the United States are compatible with

the results of Gallegati and Gallegati (2007), who studied this issue for the G-7 economies

using discrete wavelet analysis. After that, volatility decreases. These results from wavelet

analysis help to qualify some of the results present in the literature. The literature has identified

1984 as the year that marks the beginning of the Great Moderation (Kim and Nelson 1999;

McConnell and Pérez-Quirós 2000). In fact, in the 1960s the volatility was very low, after the

large fluctuations that characterized the previous decades. It then was revived, due to the oil

shocks, at the business cycle frequency in the 1970s, however this increase was temporary. These

results are in line with Blanchard and Simon (2001) who have argued that the large shocks in the

1970s and the deep contraction in early 1980s hide from view the longer term volatility decline

that began a few decades before. As one would expect, given the recent financial and economic

crises, after 2005 there is again evidence that volatility is increasing, suggesting that the ‘Great

Moderation’ is not so great anymore. We see this because the wavelet power spectrum becomes

statistically significant in the late 2000s at 2 to 8 years frequencies. Although part of this region

may be affected by edge effects (because it is under the effect of the cone of influence) it is also

true that a part of it is not affected by those edge effects.13

13One should also keep in mind that, because of the zero padding (after demeaning the series), this influence
will tend to underestimate, not overestimate, the power spectrum, which, actually, reinforces our results.
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Figure 3: Macroeconomic Variables, U.S. 1961:6-2011:12

The power spectrum of inflation clearly shows the buildup of inflation since the 1960s, with

an expansion of the regions with significant power, and the inflationary effect of the oil shocks —

with visible peaks in the 4∼8 frequency-band during the 1970s and early 1980s. It then shows

the gradual control of inflation after the mid-1980s, with a decrease in the regions of significance

and a gradual shift of the volatility peaks to cycles of longer period — frequency-bands of more

than 8 years — until the disappearance of peaks since the early 1990s, consistent with the recent

control of the level and the volatility of inflation. There is evidence that this control includes

long-run inflation — and thus inflation expectations — as the peak in frequencies corresponding

to more than 16 years that existed since the 1960s also disappears around 1990. Therefore, we

also observe a great moderation on the volatility of inflation, which started in the 1950s and

was temporarily revived during the oil crises in the 1973 and 1979. These results show that the

"Great Moderation" is not just a real phenomenon but also a nominal phenomenon.

In the second half of the 1960s, as the level of interest rates accommodated increasing

inflation, the power spectrum of the FFR starts showing peaks at frequency bands around

the 12 years. These peaks then extend through cycles of higher frequency and join a region

of peaks that appeared during the early 1970s at the 4∼8 frequency-band, to form a region

of very strong power in frequencies between 6 and 16 years in the second half of the 1970s.

20



In 1980, at 8 years frequency, starts the region painted with the darkest red, showing that

the beginning of the strongest peak in the interest rate variance coincides with the 1979-82

monetarist experiment. The whole disinflationary policy is apparent in the peaks that occur in

a broad range of frequencies. The power spectrum then evolves to a concentration of energy

around two poles, the 8 and the 16 years frequencies. These eventually fade out during the

1990s, which suggests that monetary policy has been far less active thereafter, given the above

mentioned control of inflation. At the end of the sample there are signs of a resurrection of

monetary policy, especially at business cycles frequencies (cycles between 6 and 8 years) clearly

in response to the financial and economic crisis.

5 Empirical Results

In this section we present the results of the wavelet analyses of our time-series — the coherence

and the phase difference14 between each pair of yield curve latent factor (level, slope, curvature)

and macro variable (unemployment, economic activity, inflation and fed funds rate). Our tools

give quantified indications of the similarity of power between each time series and a measure of

the lead-lags of their oscillations at each frequency and each point in time.15 We also include

significance values generated by bootstrapping. It could be argued that the bootstrapping-based

significance levels understate the uncertainty involved in our exercise, as we treat the yield

curve latent factors similarly to the macroeconomic data ignoring that there is filter as well as

parameter uncertainty associated to their estimates. For robustness, all the calculations done

in this section were replicated using the empirical proxies referred above. The main conclusions

we reach are similar (in particular, the results related to the slope of the yield curve are almost

identical).

The interpretation of our econometric results proceeds as follows. First, we check the time-

frequency regions in which the coherency between the variables is statistically significant, mean-

ing that, in those episodes, we may confidently say that there has been a significant co-movement

of the variables for cycles of the indicated period. Then, for the statistically significant time-

frequency locations, we analyze the phase differences, to detect whether the co-movement has

been positive or negative, and which variables were leading and lagging.

5.1 Real activity and the yield curve

In this sub-section we study the time-frequency relation between our two proxies of real eco-

nomic activity and the yield curve latent factors. We expect different results for these two

14In Figures 4-7, the phase-difference is represented by a thick red line. The green line represents the phase of
the macro variable, and the blue line represents the phase of the yield curve factor.

15Overall, we will not mention often results about the coherency and phase differences at the higher frequencies
— cycles of 1 month∼1 year — as they are tipically noisy and, as such, rather uninformative.
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macro variables, as the timing of their correlation to real GDP growth is quite different (the

unemployment rate lags the ADS index — which is a coincident index of GDP growth — by about

one year).

5.1.1 A coincident indicator for economic activity: the ADS index

We firstly take the ADS index as the indicator of the overall economic activity. Given the

literature, we expect the slope — and possibly the curvature — to relate significantly with the

index, at least during some sub-sample periods. The results are presented in Figure 4, which

includes the coherency (lef-hand-side panel) and the phases and phase differences (right-hand-

side panel) for the three pairs formed by each yield curve factor and the ADS index.

There is a large region of significant coherency between the level of the yield curve and the

ADS index between 1975 and 2011, for cycles in the frequency bands of 4∼8. There is also a

significant coherency for cycles of 8∼12 years, but this turns non significant in the late 1990s.

The phase differences confirm that the level of the yield curve has not a reasonable predictive

power for real economic activity. On the contrary, at the 4∼8 years band most of the time an

increase in the level anticipates an increase in the ADS index and at the 8∼12 years band an

increase in the ADS index anticipates a fall in the yield curve level.

There is no significant coherency at any frequency band between the yield curve slope and the

ADS index in 1985-1990, which is consistent with the structural break in continuous regressions

of the yield slope on output growth (with a forecast breakdown) detected, with alternative

methods and/or data, by, e.g., Pace (2012), Chauvet and Potter (2002, 2005), Haubrich and

Dombrosky (1996), and Dotsey (1998). Our results confirm the typical association between this

forecasting breakdown of the yield slope and the beginning of the Great Moderation as well as

the change in monetary policy regime after the Volcker monetarist episode; and they contrast

with previous results presented in the literature, as in, for example, Giacomini and Rossi (2006) —

who have detected forecast breakdowns of the yield slope in the mid-1970s and in 1979-1987, i.e.

during the Burns-Mitchell and Volcker regimes, rather than at the beginning of the Greenspan

regime (actually stating, in page 794, that “during the early part of the Greenspan era the yield

curve emerged as more reliable model to predict future changes in economic activity”).

The phase differences in fact support the above interpretation of a structural change with

a forecast breakdown. At the 4∼8 years band, in 1965-1985, and at the 8∼12 years band, in

1972-1985 (the regions of significant coherencies), the phase differences are between π/2 and π,

meaning that an increase in the slope — a flattening of the curve — anticipated (as expected)

falls in the ADS index. For cycles of period 4∼8 years, during 1990-2002 the coherency is

again statistically significant and the phase differences continue to indicate a leading role for

the slope, with flatter yield curves predicting a contraction in real economic activity, meaning

that the forecast breakdown has been reverted after the early 1990s, but only for this range of

periodicities. In contrast, for cycles of period 8∼12, after 1997, and for cycles of period 4∼8,
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after 2003, the coherencies are significant and the phase differences are between 0 and π/2,

meaning that increases in the ADS index anticipated a flattening of the yield curve — i.e. the

slope fails to forecast economic activity.

These results, and most specially those for the 4∼8 frequency band (2003-2011) for which the

phase differences are well within the 0—π/2 interval, are consistent with the so-called conundrum

of the Summer of 2006, when the yield curve became inverted and yet no recession emerged —

see e.g. Kucko and Chinn (2010) and Hamilton (2010). In fact, the significant coherency and

the phase differences at that time-frequency region suggests that the slope and the ADS relate

positively with each other, with the ADS index slightly leading the slope of the yield curve —

a flatter yield curve was associated to an economic expansion, failing to predict a recession as

would be expected in normal times.

There is a large time-frequency region of statistically significant coherency between the cur-

vature of the yield curve and the ADS index, at the 4∼8 years frequency band (in 1965-1985)

and at the 8∼12 years band (in 1970-1988). At this region, the phase differences are consis-

tently located within −π/2 and 0, indicating that increases in the curvature (higher concavity)

anticipate increases in economic activity.

There are significant coherencies between the curvature and the ADS index for cycles of 16

or more years, since 1993, and for cycles of period 4∼8 years since 2003. The phase differences

consistently located in the region between 0 and π/2 indicate that in those episodes and fre-

quencies increases in the ADS led to increases in the curvature. In particular for the 4∼8 years

cycles, these results are consistent with those obtained for the ADS-slope relation, which we

found related to the 2006 conundrum. To see that, recall that higher curvatures (higher concav-

ities) are typically associated with higher slopes (flatter curves): in short, for 4-8 years cycles,

since 2003, increases in the ADS index have been associated (slightly leading) with increases in

the concavity and flattenings of the yield curve.
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Figure 4: Economic Activity and the Yield Curve, U.S. 1961:6-2011:12
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5.1.2 A lagged indicator for economic activity: the unemployment rate

We now take on the unemployment rate as an indicator of macroeconomic activity and assess its

relation to the latent factors of the yield curve. By analogy with our previous results, we would

expect the slope — and possibly the curvature — to relate significantly with unemployment, at

least during some important sub-sample periods. The results are presented in Figure 5.

Most regions of high coherency between the yield curve level and the unemployment rate

occur between 1970 and 2005 in cycles of periodicity in the 4∼8 years frequency band and

between 1975 and 1997 in the 8∼12 years period cycles. It is visible a gradual shift from

shorter-run frequencies (with period cycle closer to 4 years) to longer-run frequencies, with

period closer to 12 years, which is reverted after 1995. Independently of the shift in coherency

across frequencies, we observe a rather stable phase relationship in all the frequency bands

involved (1∼4, 4∼8 and 8∼12 years): for most of the time, the phase difference is between

−π/2 and 0, indicating that the yield curve level leads the unemployment rate and that an

increase in the level of yields is associated with an increase in unemployment.

There are important regions of statistically significant coherency between the yield curve

slope and the unemployment rate between 1965 and 1985 and, again, between 1990 and the

end of the 2000s. The lack of coherency in 1985-1990 at all frequency bands (detected in the

previous sub-section also for the ADS index) is consistent with the structural break in continuous

regressions of the yield slope on output growth (with a forecast breakdown) well documented in

the literature. However, and in contrast to what has been detected in the case of the ADS index;

in most of the periods with significant coherency, an increase in unemployment anticipates a

decrease in the slope, i.e. a steepening of the yield curve. We interpret this evidence as capturing

the lead of higher unemployment rates to a monetary policy ease (which would result in steeper

yield curves).

At frequencies with period cycle between 4 and 8 years, from the early 2000s onward, the

phase differences indicate that the yield curve slope leads unemployment by around 1.5 to 2

years, with an increase in the slope (flattened curves) anticipating lower unemployment. This is

consistent with the conundrum of the summer of 2006, as well as with the results seen previously

for the ADS index. As Hamilton (2010) points out, it seems that the very low overall levels of

interest rates recorded at the time has mitigated the recessionary signal given by the yield slope;

our results confirm such conjecture and show that it relates to the ability of the yield curve to

predict cycles of the unemployment rate with periodicity in the 4∼8 years frequency band. This

mimics the results obtained for the coherency and phase differences between the ADS index and

the slope of the yield curve, since the early 2000s, for these cycles as well as for those of 8∼12

years.
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Figure 5: Unemployment and the Yield Curve, U.S. 1961:6-2011.12
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Regarding the time-frequency relations between unemployment and the curvature, there is

a large region of statistically significant coherency in the 4∼8 frequency band (between the late

1960s and the mid-1980s) and in the 8∼12 years band (between the mid-1970s and the late

1980s). The phase differences indicate, overall, that in these episodes the leading variable has

been the unemployment rate, rather than the yield curve curvature. The coherency between the

curvature and the unemployment rate is again statistically significant since 1990 for cycles of

around 16 years and since 2000 for cycles of period 4∼8 years. For both, the phase differences

between π/2 and π indicate that the curvature has led the unemployment rate, with increases in

the curvature associated with lagged decreases in the unemployment rate. As the curvature is

positively correlated with the slope — increases in concavity (curvature) are typically associated

with flatter yield curves (increases in the slope) — the evidence here uncovered for cycles of 4∼8

year cycles after 2000 is consistent with the 2006 conundrum and the related evidence regarding

the slope. It is, furthermore, consistent with the findings above for co-movement between the

curvature and the ADS index for these cycles since 2003, once the lags of unemployment to the

ADS are considered.

5.1.3 Real activity and the yield curve: summary of results

First, in line with the literature, we find no clear-cut relation between the level of the yield

curve and the ADS index. However the level anticipates increases in the unemployment rate

for most frequency bands and most of the sample period. Given its persistence and nominal

determinants, the yield curve level is not well suited to track monthly real economic growth,

but helps tracking the unemployment rate — a novel result that we explain with the fact that

the unemployment rate is more persistent and lags real output growth.

Second, the coherency between the slope of the yield curve and real economic activity has

not been statistically significant during 1985-1990. In fact, from 1965 (for cycles of period 4∼8

years) and from the early 1970s (for cycles of period 8∼12 years), until 1985, flatter yield curves

have led decreases in the ADS, while increases in the unemployment rate have led to steeper

yield curves; and this pattern is only resumed after 1990. These results, which may at first

sight appear to be inconsistent, should be interpreted having in mind that the unemployment

rate lags the ADS index: our phase difference analyses for cycles of period 4∼8 and 8∼12 years

capture the lead of the slope over the ADS associated with short-term rates changes determined

by monetary policy, while in the case of unemployment they capture the lead from changes in

the unemployment rate to monetary policy reactions (which seem to be closer in time than the

impact of monetary policy on the unemployment rate).

Our results thus confirm that the breakdown of the slope to predict real activity has been

associated with the Great Moderation, as argued in some literature, but further inform that

the forecasting ability has reappeared in the 1990s, and establish the frequency of the cyclical
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oscillations involved in that structural change (between 4 and 12 years).

Third, our results shed light on the episode known as the yield curve 2006 conundrum,

and, more in general, on the failure of the yield slope to predict real activity in recent times.

In fact, since the early 2000s, for cycles of period 4∼8 and 8∼12 years, the phase differences

are consistent with flatter yield curves, such as the one observed in the summer of 2006, being

associated to economic expansions, rather than recessions as would be expected in normal times.

Fourth, we do not uncover any significant role for the curvature either as a leading or as

a coincident indicator of economic activity, in contrast with evidence obtained elsewhere in

the literature with different data and methods.16 Until 1988 (for 4∼12 year cycles), increases

in the curvature lead to increases in the ADS and lag increases in the unemployment rate,

which is the symmetric of what would be expected. After 2003, for cycles of period 4∼8 years,

the evidence is more in line with the one obtained for the slope and is consistent with the

2006 conundrum: increases in the ADS led to increases in the curvature which, in turn, led to

decreases in unemployment. Again, this evidence should be interpreted bearing in mind that

higher curvatures are mostly associated with higher slopes and that the unemployment rate lags

behind the ADS index by about a year.

5.2 Inflation and the yield curve

In the literature, there are two main associations of inflation to the yield curve. On the one

hand, its level is seen as reflecting the path of the nominal anchor of the economy (measured

by inflation, as in, e.g., Diebold, Rudebusch and Aruoba, 2006, or by inflation expectations, as

in, e.g., Mumtaz and Surico, 2009). On the other hand, its slope or changes between slopes

computed at different horizons are seen as predictors of changes in inflation at such horizons

(see, e.g., Mishkin, 1990a, 1990b, 1990c, and Estrella, Rodrigues and Schich, 2003). In this

sub-section we assess the relation of the level, slope and curvature with inflation, in the time-

frequency domain.17 Figure 6 shows our results.

The larger regions of high coherency between inflation and the yield curve level are situated

in cycles in the frequency bands of 4∼12 years and occur between the early 1970s and the

early 1990s. Across these periods and frequencies, the phase difference is between 0 and π/2,

16As pointed out by a referee, it should be stressed that our framework differs markedly from those of Moench
(2010) and Modena (2008) — who have detected a leading and a coincident role of the curvature, respectively —,
and so our results are not directly comparable. In fact, they assess the predictive content of shocks to the yield
curve curvature while we merely assess the role of the level of the curvature, as our non-parametric approach
does not impose restrictions allowing for the identification of shocks to the latent factors of the yield curve.

17It should be noted that our assessment of the slope-inflation relation is not directly comparable to the others
in the literature. First, most studies use empirical proxies for the yield spread, rather than a model-based one
such as ours (and in many cases the proxy differs substantially from the empirical properties of ours). Second,
the literature typically looks at regressions of the difference between inflation in period m and inflation in period
n, on the difference between the yield for maturity m and the yield for maturity n (e.g. Estrella, Rodrigues and
Schich, 2003); our analyses focus on the co-movement (and the time lags therein) between the level of inflation
and the level of the slope, for all time periods and cyclical frequencies.
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indicating that the yield curve level reacts, in the same direction, to changes in inflation.

A first lesson drawn from our analysis is that until the early 1990s the yield curve level

has indeed mirrored the path of inflation, with some delay, in fluctuations of period within the

standard concept of business cycles. This is consistent with the view that inflation determines

the whole yield curve and is thus supportive of the above mentioned association between inflation

(or expectations) and the yield level.

A second lesson is that the coherency between the yield curve level and inflation has vanished

since around 1993 (to reappear since around 2003, but only for cycles of period 4∼8 years (and

significant merely at the 10 percent level). This breakdown of the inflation-yield level relation

coincides with the consolidation of the low inflation regime typically associated with the FED

chairmanship of Alan Greenspan — notice, in the third graphic of Figure 3, the apparent fall

in the volatility of inflation since 1993, which upheld until the recent financial and economic

crisis — as well as with the intensification of the U.S. external imbalance in a context of a global

savings glut and a persistently accommodative domestic monetary policy — factors that have

somehow detached the overall level of interest rates from macroeconomic conditions in the U.S.

A first idea that emerges from our time-frequency analysis of inflation and the yield slope

is that between 1985 and around 1993 there is no significant coherency at any frequency band.

Such result is consistent and complements the evidence of a structural change also found in the

previous sub-sections regarding the relation between the slope and economic activity; and may

explain the difficulties in estimating stable regressions reported in a large part of the literature

(see, e.g., Mishkin, 1990a, 1990b, 1990c, and Estrella, Rodrigues and Schich, 2003).

Apart from the mentioned period, most of the coherency appears at the 4∼8 years frequency

band, which clearly indicates that the relation between the slope and inflation relates to business

cycles. At that frequency band, until the early 1980s the phase difference is located within the

−π/2 and 0 interval, implying that an increase in the slope anticipates (by around 2 to 3 quarters)

an increase in inflation. At the 8∼12 years frequency band the relation changes gradually from

an in-phase relation in the 1970s — one of perfect synchronization of the slope and inflation —

to a similar lead of inflation by some quarters in the 1980s. After the period of absence of

coherency (1985-1993) the coherency resumes only within the 4∼8 years frequency band, and

the phase difference fluctuates around 0, indicating positive co-movements that in some periods

are contemporaneous, while in others there is a slight lead or lag (1 to 2 quarters) of the slope.
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Figure 6: Inflation and the Yield Curve, U.S. 1961:6-2011:12
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Such results may seem hard to reconcile with the ability of increases in the slope to predict

recessions, as these are typically associated to reductions in inflation. However, once the lags

suggested by the phase difference diagrams, the lags in the transmission of monetary policy,

and the fact that policy is conducted in reaction to expectations of inflation are considered, a

consistent story emerges: our evidence is consistent with a monetary policy explanation for the

leading role of the slope. When policy-makers forecast inflationary pressures and implement

a tighter monetary policy, thus flattening the yield curve, inflation is not brought to control

immediately (and hence the flattening anticipates a rise in inflation) but only with a lag when a

recession arises, as a side-effect of such policy (later, as monetary policy reacts to the recession

and the ensuing control of inflation, the unemployment rate anticipates the subsequent monetary

actions, as seen above). This interpretation is corroborated by the reappearance of the leading

role of the slope, for cycles of period 4∼8, at around the same time for the ADS (1990-2002)

and for inflation (1993-2002). Hence, the forecast breakdown of the slope since 1985 may be

seen as an indicator of success of monetary policy, in that its reaction to inflationary pressures

is less related to recessions thereafter and, additionally, it has been more effective in controlling

inflationary pressures duly forecasted.

Overall, in the earlier part of the sample, the regions of significant coherency between the

curvature of the yield curve and inflation correspond to phase differences within the interval

between π/2 and π, indicating that an increase in the curvature (stronger concavity) anticipates

reductions in inflation. This happens in the 4∼8 years frequency band until 1980, and in the

8∼12 and 12∼18 years bands until 1992. We find results hard to reconcile with those on the

relation between the slope and inflation, given that curvature and slope co-move positively and

suggest that the curvature does not relate closely to inflation in most cyclical frequencies and

sub-sample periods. In the early 1980s a change occurs at the 4∼8 years frequency band, and

increases in inflation start anticipating increases in the curvature, as the phase differences turn

into the interval between 0 and π/2. After about 10 years with non significant coherency, from

2000 onwards the coherency at the 4∼8 years cycle is again significant, with the phase differences

steady between 0 and π/2 indicating that increases in inflation led increases in the curvature.18

5.3 Monetary policy and the yield curve

The relation between the level of the yield curve and the monetary policy interest rate is surely

positive, as increases in the FFR should lead increases in the yield levels. As regards the shape

of the yield curve, one could expect a twofold relation between its slope and the monetary policy

interest rate. On the one hand, in the course of its transmission mechanism, monetary policy

18This positive co-movement is consistent with the one detected between the slope and inflation, but may
appear puzzling as the curvature lags inflation, while the slope leads; however, the apparent puzzle is solved once
one considers that, in our data, the curvature lags the slope after 1980.
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actions should lead to changes in the yield curve slope as changes in the money market interest

rates impact first in the short-end of the curve and only then in its longer maturities. On the

other hand, financial markets often anticipate the moves of monetary policy-makers and so the

yield curve slope may lead the FFR. The relation with the yield curve curvature is less clear-

cut, but should broadly mimic the one with the slope, once the lags between the time series are

considered. Figure 7 shows that these relations are indeed strong.

There is a high and statistically significant coherency between the yield curve level and the

FFR at low frequencies during the whole sample period. Possibly reflecting the changes in

the monetary policy regime (with the Greenspan chairmanship since the end of the 1980s) this

high coherency moves to cycles of longer period after around 1987. In 2000 this coherency was

concentrated in the 16 years period cycle and then it loses significance, at the 5 percent level

although remaining important (and significant at 10 percent) until the end of the sample. The

phase differences at those frequencies (8∼12 and 12∼18 years) are overall located between 0 and

π/2 but close to 0, indicating that increases in the FFR slightly anticipate increases in the level

of the yield curve.

At the frequency band of 4∼8 years, the largest period of high and statistically significant

coherency runs from 1970 to 1987, with the phase differences indicating that the FFR leads the

level of the yield curve; such pattern reappears in the period 2000-2005.

The relation between the FFR and the yield slope is even stronger, as there are regions of very

high and statistically significant coherency at most of the time-frequency locations. Indeed, since

1965 there are statistically significant coherencies at the 1∼4, 4∼8 and 8∼12 frequency bands,

in spite of some change in the specific periodicity of the involved cycles. At the 12∼18 years

frequency band the coherencies are significant after 1980. Overall, these significant coherencies

are associated with phase differences between −π/2 and π/2, meaning that the slope and the

FFR co-move in the same direction for all cyclical frequencies throughout all the period, i.e.

increases in the slope (flattening of the yield curve) are associated with increases in the FFR —

which is consistent with a monetary policy explanation of the changes in the yield curve shape.

At the 4∼8 years cycles, the phase differences indicate a contemporaneous coherency between

the slope and the FFR. At longer cycles, for most of the time, the slope leads the FFR.

Overall, we draw two main conclusions. First, tighter monetary policies have been associated

with flatter yield curves throughout the whole sample period and across all the frequency bands.

This means that monetary policy has impacted differently on the short-end of the yield curve

than it has impacted on its long-end, irrespectively of the periodicity of the FFR and slope

movements. Second, the yield curve slope has often been a good predictor of monetary policy

for cycles of period above the standard business cycle definition (8∼12 and 12∼18 years) but

less so for cycles of smaller period.
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Figure 7: Fed Funds Rate and the Yield Curve, U.S. 1961:6-2011:12
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Finally, we assess the results on the relation between the curvature of the yield curve and

the FFR. There is a first region of high and significant coherency at the 4∼12 years frequency

bands between 1965 and the mid 1980s. For these time-frequency areas, the phase difference

is between π/2 and π, indicating a negative relation with the yield curvature leading: higher

degrees of concavity in the yield curve anticipate lower FFRs. This result is puzzling, given that

more concave yield curves are typically associated with flatter yield curves, which in turn should

be associated with higher interest rates at the short-end of the yield curve and, consistently,

with higher monetary policy interest rates. Differently, the curvature-FFR relation is in line

with expectations for cycles of period 1∼4, 12∼18 and above, in which strong and sometimes

significant coherencies combine with phase differences between —π/2 and π/2 that consistently

point to a positive co-movement.

After 1992, the coherency between the curvature and the FFR became significant again, for

4∼8 years cycles, and during most of this period, the phase differences have been between 0

and π/2, indicating that increases in the FFR led to increases in the curvature (associated with

flatter curves, as expected). Between 2006 and 2008 the phase differences have been located

between 0 and −π/2, meaning that increases in the curvature anticipated increases in the FFR.

Taken together with the results for the slope-FFR relation above, these results suggest that

during the 2006 conundrum the yield curve may have failed to forecast economic activity but

has correctly forecast monetary policy.

6 Conclusion

In this paper, we assessed the relation between the yield curve shape and the U.S. macroeconomy

between 1961:6 and 2011:12 across time and frequencies, using wavelet tools. The shape of

the yield curve was modeled with three time-varying latent factors corresponding to its level,

slope and curvature. The macroeconomic variables are an index of overall economic activity,

unemployment, inflation and the federal funds rate (FFR). The time-frequency fills a gap in the

literature, which has been conducted so far exclusively in the time-domain. We provide a new

description of the relation between the yield curve and the macroeconomy in the US, which,

besides their immediate relevance, should prove useful for future research on this area. Among

the numerous results, a core set of findings may be summarized as follows.

The level of the yield curve has essentially been determined by nominal variables — FFR and

inflation. However, we uncovered a gradual change in the FFR-level relation since 1987 and a

structural change in the level—inflation relation around 1993. While the movements in the FFR

anticipated movements in the level of the yield curve for most frequencies, after the outset of Alan

Greenspan’s mandate in 1987 the high coherency between these variables moved progressively

to cycles of longer period (larger than 12 years). In turn, inflation has led the yield curve level
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only until 1993, when the volatility of inflation fell markedly. We interpret these results jointly,

as symptoms of the gradual success of the new monetary regime in anchoring expectations of

inflation, as well as of the new macro environment of a global savings glut feeding the US external

imbalances with an overall detachment of yields from their macro determinants.

The yield curve level has not related significantly in a meaningful way with an index of

economic activity that closely tracks monthly real output growth (the ADS index). Yet, we

found that changes in the level anticipate changes in unemployment in the same direction for

several periods and frequencies.

Changes in the slope of the yield curve were significantly associated with changes in the FFR

in the same direction across almost all the sample period, either contemporaneously or with a

small lead by the slope. Such evidence is consistent with the monetary policy explanation for

the predictive power of the yield curve slope.

At business cycle frequencies (and lower), increases in the slope led by a few quarters increases

in inflation and anticipated recessions with a larger lead. We interpret these results as evidence

of a reaction of monetary policy to expectations of inflation, and of the typical outside lag

of monetary policy — policy controls inflation only with a lag and after real economic activity

responds. Most importantly, we uncovered clear time-frequency evidence of the structural change

with a forecast breakdown in the relation between the slope and the main macro variables: the

predictive power of the slope at business cycle frequencies vanished after 1985, when the Great

Moderation began, to reappear in 1990 regarding real activity and in 1993 regarding inflation

(but here only at cycles of 4∼8 years and with a considerably smaller lag, compatible with more

effective inflation targeting).

After 2003, flatter yield curves became associated with expansions, rather than recessions,

at the business cycle frequencies. Our evidence thus clarifies that the well-known yield curve

conundrum of 2006 has its roots in a change in the relation between the slope and output

(and inflation) in the 4∼12 year frequency band from 2003. At that time, the factors driving

the detachment of yield levels from macro conditions that were in place since the 1990s —

the credibility of the U. S. post-1987 monetary policy regime and the world savings glut —

were combined with a monetary policy of unusually low short interest rates for an unusually

long period. Given that the FFR fell considerably from 2001 to 2004 and the yield level fell

considerably from 2003 to 2006, our evidence is consistent with the hypothesis that the fall in

the level of yields in the last decade has damaged the ability of the slope to predict business

cycles and the related changes in inflation. As Hamilton (2010, page 1012) pointed out, in the

summer of 2006 “. . . although the 3-month rate was above the 10-year rate, the overall level of

the 3-month rate was lower than it had been prior to any recession since 1960.”

Finally, we did not find statistical evidence of a consistent role for the curvature either as

a leading or as a coincident indicator of economic activity, nor did we find a clear-cut relation

between the curvature and inflation, either in the pre-1985 or in the post-1993 period. After
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2003, we found evidence indicating that the 2006 conundrum has also been present in the

curvature. During the yield curve conundrum of 2006, the curvature was a good predictor of

the FFR, which, together with the evidence regarding the slope-FFR relation above mentioned,

indicates that the yield curve may have failed to forecast economic activity but not monetary

policy.
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