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Abstract

We use wavelets, cross-wavelets, wavelet-phase analysis, wavelet-clustering and

multidimensional mapping to study business cycle synchronization across countries

that are part of the Euro12 Area. Based on the wavelet spectra, we propose a metric

to measure business cycle disynchronicity. We identify Germany, France, Spain, Aus-

tria and the Benelux countries as the core of the Euroland and another group with a

less synchronous business cycle and ask whether these latter countries are converging

to the Euroland core, and, if so, at what frequencies. With the exception of Portugal,

all countries are converging to the Euro core. This convergence is particularly strong

in the case of Ireland and Italy.
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1 Introduction

The business cycle synchronization literature is related to the literature on optimal currency

areas and, more broadly, on economic unions. The idea is simple. If several countries dele-

gate on some supranational institution the power to perform a common monetary (or fiscal)

policy, then they loose this policy stabilization instrument. If countries have asymmetric

business cycles then it may not be optimal to have the same decision applied to every coun-

try. Naturally, business cycle synchronization is not sufficient to guarantee that a monetary

union is desirable. But it is a necessary condition. Therefore, a country with an asynchro-

nous business cycle faces several difficulties in a monetary union, because of the ‘wrong’

stabilization policies. With the recent enlargement of the European Union, the interest on

this topic is guaranteed for a while.

The literature on business cycle comovements is large, and growing, and may be sub-

divided in several branches, which are not isolated between themselves. One branch is

concerned about the best way to estimate a common business cycle. For example, the

EuroCOIN, a coincident indicator that measures European Economic Activity is based on

the work of Forni et al. (2000), who rely on a dynamic factor model to extract the com-

mon European Activity Index. Another example of this type of approach is given by Artis

et al. (2004) that uses Markov switching autoregressions and Markov switching vector-

autoregressions to identify a common unobserved component that determines an European

business cycle dynamics. Another branch tries to answer the question of whether there is a

common business cycle or not. For example, Camacho et al. (2006) and Harding and Pagan

(2006) discuss how the degree of synchronization between business cycles of different coun-

tries can be measured and tested. The empirical evidence on the existence of an European

business cycle is mixed. Clark and Wincoop (2001) document that business cycles of U.S.

Census regions are substantially more synchronized than those of European countries and

Camacho et al. (2006) conclude that there is no common business cycle across Europe, while

Artis et al. (2004) find a common component governing European business cycle dynamics.

Finally, some authors are concerned with the determinants of business cycle comovements.
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Selover and Jensen (1999) take a purely mathematical modeling approach to conclude that

the world business cycle may result from a mode-locking phenomenon (a nonlinear process

by which weak coupling between oscillating systems tends to synchronize oscillations in the

systems). Most other authors look for economic reasons. Frankel and Rose (1998) focus on

the effects of international trade and Rose and Engel (2002) argue that, because currency

union members have more trade, business cycles are more synchronized across currency

union countries. According to Imbs (2004), economic regions with strong financial links

are significantly more synchronized. Particularly relevant to our analysis are the results of

Inklaar et al. (2008), who conclude that convergence in monetary and fiscal policies have a

significant impact on business cycle synchronization. Again, evidence on this topic is mixed.

Baxter and Kouparitsas (2005), for example, argue that currency unions are not important

determinants of business cycle synchronization (or at least this effect is not robust) and

Camacho et al. (2008) present evidence that differences between business cycles in Europe

have not been disappearing.

We argue that wavelet analysis is particularly well-suited to study business cycle syn-

chronism. With the wavelet transform, we estimate the evolution of the power spectrum

across time. We propose a metric to compare the power spectra. With that metric, we

fill a dissimilarity matrix, which is used, with clustering techniques and multidimensional

scaling, to group the countries in terms of business cycle synchronism. Then, using cross-

wavelets, wavelet-phase and phase difference analysis, we are able to study when and at

what frequencies did that synchronization start. We focus on the first countries that joined

the Euro (plus Greece). We identify a group of countries that form the core of the Euroland

in terms of business cycle synchronism: Germany, France, Austria, Spain and the Benelux

countries. The group with the least synchronous cycles is formed by Portugal, Italy, Greece

and Finland. It is not clear in which of the groups we should include Ireland. We also

conclude that, with the exception of Portugal, all countries in the asynchronous group are

converging to the Euro core. This convergence is particularly strong in the case of Ireland

and Italy.
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The paper proceeds as follows. In section 2, we discuss the main advantages of wavelet

analysis, its applications to economics and some of the typical difficulties in applying it to

study economic relations. We present the continuous wavelet transform, discuss its localiza-

tion properties and the optimal characteristics of the Morlet wavelet. We also describe the

wavelet power spectrum, how to measure wavelet spectra dissimilarities, the cross-wavelet

power spectrum, the wavelet coherency and the phase-difference. In section 3, we apply these

tools to study business cycle synchronism across the Euro12-area. Section 4 concludes.
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2 Wavelets: Frequency Analysis Across Time

Wavelet analysis performs the estimation of the spectral characteristics of a time-series as a

function of time, revealing how the different periodic components of the time-series change

over time. While the Fourier transform breaks down a time-series into constituent sinusoids

of different frequencies and infinite duration in time, the wavelet transform expands the

time-series into shifted and scaled versions of a function that has limited spectral band and

limited duration in time.1

As a coherent mathematical body, wavelet theory was born in the mid-1980s (Grossmann

and Morlet 1984, Goupillaud et al. 1984). The literature rapidly expanded and wavelet

analysis is now extensively used in physics, epidemiology, signal processing, etc. Still, this

technique is infrequently used in Economics. One peculiarity of the applications of wavelet

to economics is the almost exclusive use of the discrete wavelet transform, e.g. Gençay et al.

(2005), instead of the continuous transform that we use in this paper. To our knowledge,

Raihan et al. (2005), Crowley et al. (2006) and Aguiar-Conraria et al. (2008) are the

only exceptions to this rule. For a detailed review of wavelet applications to economic and

financial data, the reader is referred to Crowley (2007).

Most of the times, these techniques have either been applied to analyze individual time-

series (e.g. Gallegati and Gallegati 2007) or used to individually analyze several time-series

(one each time), whose decompositions are then studied using traditional time-domain meth-

ods (e.g. Ramsey and Lampart 1998a and 1998b). However, wavelet tools have been gener-

alized to accommodate the analysis of time-frequency dependencies between two time-series:

the cross-wavelet power, the cross-wavelet coherency, and the phase-difference, proposed by

Hudgins et al. (1993) and Torrence and Compo (1998) have been applied in different scien-

tific fields. Gallegati (2008) – using the Maximum Overlap Discrete Wavelet Transform –,

Crowley et al. (2006) and Aguiar-Conraria et al. (2008) – using the Continuous Wavelet

1We know from the Heisenberg uncertainty principle that there is always a trade-off between localization
in time and localization in frequency. However, a mother wavelet can be chosen with a fast decay in time
and frequency which, for all practical purposes, corresponds to an effective band and time limiting; see
Daubechies (1992).
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Transform – showed that cross-wavelet analysis could be fruitfully applied to study pairs

of Economic time-series.

While the (single) wavelet power spectrum describes the evolution of the variance of a

time-series at the different frequencies, with periods of large variance associated with periods

of large power at the different scales, the cross-wavelet power of two time-series describes the

local covariance between the time-series. On the other hand, one can look at the wavelet

coherency as a localized correlation coefficient in the time frequency space. The phase

can be viewed as the position in the pseudo-cycle of the series as a function of frequency,

therefore the phase-difference gives us information on the delay, or synchronization, between

oscillations of the two time-series. See Bloomfield et al. (2004) and Aguiar-Conraria et al.

(2008).

To estimate a dissimilarity matrix between countries based on their wavelet spectra, one

has to find a metric to measure the distances between two wavelet spectra. Comparing

time-series based on their wavelet spectra is, in a sense, like comparing two images. Direct

comparison is not suitable because there is no guarantee that regions of low power will not

overshadow the comparison. It would be like comparing two pencil-drawing sketches based

mainly on the color of the paper, disregarding the sketches themselves. We build on the

work of Rouyer et al. (2008) and use the singular value decomposition (SVD) of a matrix to

focus on the common high power time-frequency regions. This method is similar to Princi-

pal Component Analysis, but while with the latter finds linear combinations that maximize

the variance, subject to some orthogonality conditions, the method we use extracts the

components that maximize covariances instead, subject to similar orthogonality conditions.

Therefore, the first extracted components correspond to the most important common pat-

terns between the two wavelet spectra. With that information, and after defining a metric

to measure the pairwise distance between the several extracted components, we can build

a dissimilarity matrix between the several analyzed countries. From that point it is easy to

implement clustering and multidimensional mapping algorithms.
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2.1 The Wavelet

In what follows, L2 (R) denotes the set of square integrable functions, i.e. the set of func-

tions defined on the real line such that kxk :=
R∞
−∞ |x (t)|

2 dt < ∞, with the usual inner

product, hx, yi :=
R∞
−∞ x (t) y∗ (t) dt. The asterisk superscript denotes complex conjugation.

Given a function x (t) ∈ L2 (R), X (f) :=
R∞
−∞ x (t) e−i2πftdt will denote the Fourier trans-

form of x (t) . We recall the well-known Parseval relation, valid for all x (t) , y (t) ∈ L2 (R),

hx (t) , y (t)i = hX (f) , Y (f)i , from which the Plancherel identity immediately follows:

kx (t)k2 = kX (f)k2 . The minimum requirements imposed on a function ψ (t) to qualify

for being a mother (admissible or analyzing) wavelet are that ψ ∈ L2 (R) and also fulfills a

technical condition, usually referred to as the admissibility condition, which reads as follows:

0 < Cψ :=

Z ∞

−∞

|Ψ (f)|
|f | df <∞, (1)

where Ψ (f) is the Fourier transform of ψ (t) , see Daubechies (1992, p. 24).

The wavelet ψ is usually normalized to have unit energy: kψk2 =
R∞
−∞ |ψ (t)|

2 dt = 1. The

square integrability of ψ is a very mild decay condition; the wavelets used in practice have

much faster decay; typical behavior will be exponential decay or even compact support. For

functions with sufficient decay it turns out that the admissibility condition (1) is equivalent

to requiring Ψ (0) =
R∞
−∞ ψ (t) dt = 0. This means that the function ψ has to wiggle up and

down the t−axis, i.e. it must behave like a wave; this, together with the decaying property,

justifies the choice of the term wavelet (originally, in French, ondelette) to designate ψ.

2.2 The Continuous Wavelet Transform

Starting with a mother wavelet ψ, a family ψs,τ of “wavelet daughters” can be obtained by

simply scaling ψ by s and translating it by τ

ψs,τ (t) :=
1p
|s|

ψ

µ
t− τ

s

¶
, s, τ ∈ R, s 6= 0. (2)
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The parameter s is a scaling or dilation factor that controls the length of the wavelet (the

factor 1/
p
|s| being introduced to guarantee preservation of the unit energy,

°°ψs,τ

°° = 1)

and τ is a location parameter that indicates where the wavelet is centered. Scaling a wavelet

simply means stretching it (if |s| > 1), or compressing it (if |s| < 1).2

Given a function x (t) ∈ L2 (R) (a time-series), its continuous wavelet transform (CWT)

with respect to the wavelet ψ is a function Wx (s, τ) obtained by projecting x (t) , in the L2

sense, onto the over-complete family
©
ψs,τ

ª
:

Wx (s, τ) =
­
x, ψs,τ

®
=

Z ∞

−∞
x (t)

1p
|s|

ψ∗
µ
t− τ

s

¶
dt. (3)

Because the wavelet function ψ (t) may, in general, be complex, the wavelet transform

Wx may also be complex. The transform can then be divided into its real part, R{Wx} ,and

imaginary part, I {Wx}, or in its amplitude, |Wx|, and phase, φx (s, τ) = tan−1
³
I{Wx}
R{Wx}

´
.The

phase of a given time-series x (t)can be viewed as the position in the pseudo-cycle of the

series.For real-valued wavelet functions the imaginary part is zero and the phase is undefined.

Therefore, in order to separate the phase and amplitude information of a time-series it is

important to make use of complex wavelets. It is also convenient to choose ψ (t) to be

progressive or analytic, i.e. to be such that Ψ (f) = 0 for f < 0.3

The importance of the admissibility condition (1) comes from the fact that it guarantees

that it is possible to recover x (t)from its wavelet transform. When ψ is analytic, if x (t) is

real,4 the reconstruction formula is given by

x (t) =
2

Cψ

Z ∞

0

∙Z ∞

−∞
R
¡
Wx (s, τ)ψs,τ (t)

¢
dτ

¸
ds

s2
. (4)

Therefore, we can easily go from x (t)to its wavelet transform, and from the wavelet

transform back to x (t). Note that one can limit the integration over a range of scales,

performing a band-pass filtering of the original series. See Daubechies (1992, pp. 27-28) or

2Note that for negative s, the function is also reflected.
3Note that an analytic function is necessarily complex.
4See Aguiar-Conraria et al. (2008) for the case of complex x (t).
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Kaiser (1994, pp. 70-73) for more details about analytic wavelets.

2.3 Localization Properties

Let the wavelet ψ be normalized so that kψk = 1 and define its center μt by

μt =

Z ∞

−∞
t |ψ (t)|2 dt. (5)

In other words, the center of the wavelet is simply the mean of the probability distribution

obtained from |ψ (t)|2. As a measure of concentration of ψ around its center one usually

takes the standard deviation σt:

σt =

½Z ∞

−∞
(t− μt)

2 |ψ (t)|2 dt
¾1

2

. (6)

In a total similar manner, one can also define the center μf and standard deviation σf

of the Fourier transform Ψ(f) of ψ.

The interval [μt − σt, μt + σt] is the set where ψ attains its “most significant”values whilst

the interval
£
μf − σf , μf + σf

¤
plays the same role forΨ (f) .The rectangle [μt − σt, μt + σt]×£

μf − σf , μf + σf
¤
in the (t, f)−plane is called the Heisenberg box or window in the time-

frequency plane. We then say that ψ is localized around the point
¡
μt, μf

¢
of the time-

frequency plane with uncertainty given by σtσf . The uncertainty principle, first established

by Werner Karl Heisenberg in the context of Quantum Mechanics, gives a lower bound on

the product of the standard deviations of position and momentum for a system, implying

that it is impossible to have a particle that has an arbitrarily well-defined position and

momentum simultaneously. In our context, the Heisenberg uncertainty principle establishes

that the uncertainty is bounded from below by the quantity 1/4π:

σtσf ≥
1

4π
. (7)

If the mother wavelet ψ is centered at μt, has standard deviation σt and its wavelet
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transform Ψ (f) is centered at μf with a standard deviation σf , then one can easily show

that the daughter wavelet ψτ,s will be centered at τ + sμt with standard deviation sσt,

whilst its Fourier transform Ψs,τ will have center
μf
s
and standard deviation σf

s
.

From the Parseval relation, we know thatWx (s, τ) =
­
x (t) , ψs,τ (t)

®
= hX (f) ,Ψs,τ (f)i.

Therefore, the continuous wavelet transform Wx(s, τ) gives us local information within a

time-frequency window [τ + sμt − sσt, τ + sμt + sσt]×
£μf
s
− σf

s
,
μf
s
+

σf
s

¤
. In particular, if

ψ is chosen so that μt = 0 and μf = 1, then the window associated with ψτ,s becomes

[τ − sσt, τ + sσt]×
∙
1

s
− σf

s
,
1

s
+

σf
s

¸
(8)

In this case, the wavelet transform Wx (s, τ) will give us information on x (t) for t near the

instant t = τ , with precision sσt, and information about X (f) for frequency values near

the frequency f = 1
s
, with precision σf

s
. Therefore, small/large values of s correspond to

information about x (t) in a fine/broad scale and, even with a constant area of the windows,

A = 4σtσf , their dimensions change according to the scale; the windows stretch for large

values of s (broad scales s — low frequencies f = 1/s) and compress for small values of

s (fine scale s — high frequencies f = 1/s). This is one major advantages afforded by

the wavelet transform, when compared to the Short Time Fourier Transform: its ability

to perform natural local analysis of a time-series in the sense that the length of wavelets

varies endogenously. It stretches into a long wavelet function to measure the low frequency

movements; and it compresses into a short wavelet function to measure the high frequency

movements.

2.4 The Morlet Wavelet: optimal joint time-frequency concentra-

tion

There are several types of wavelet functions available with different characteristics, such

as, Morlet, Mexican hat, Haar, Daubechies, etc. Since the wavelet coefficients Wx (s, τ)

contain combined information on both the function x (t) and the analyzing wavelet ψ (t),
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the choice of the wavelet is an important aspect to be taken into account, which will depend

on the particular application one has in mind. We choose a complex wavelet, as it yields a

complex transform, with information on both the amplitude and phase, important to study

the business cycle synchronism between different time-series.

We will use the Morlet wavelet, introduced in Goupillaud et al. (1984):

ψη (t) = π−
1
4

µ
eiηt − e−

η2

2

¶
e−

t2

2 . (9)

The term e−
η2

2 is introduced to guarantee the fulfillment of the admissibility condition;

however, for η ≥ 5 this term becomes negligible. The simplified version

ψη (t) = π−
1
4 eiηte−

t2

2 (10)

of (9) is normally used (and still referred to as a Morlet wavelet). Our results in the next

section, were obtained with the particular choice η = 6.

This wavelet has interesting characteristics. First of all, it is (almost) analytic. For η > 5,

for all practical purposes, the wavelet can be considered as analytic; see Foufoula-Georgiou

and Kumar (1994).

The wavelet (10) is centered at the point
¡
0, η

2π

¢
of the time-frequency plane; hence,

for the particular choice η = 6, one has that the frequency center is μf =
6
2π
and the

relationship between the scale and frequency is simply f = μf
s
. Therefore there is biunivocal

relation between scale and frequency and we will use both terms interchangeably

It is simple to verify that the time standard deviation is σt = 1/
√
2 and the frequency

standard deviation is σf = 1/
¡
2π
√
2
¢
. Therefore, the uncertainty of the corresponding

Heisenberg box attains the minimum possible value σtσf = 1
4π
. In this sense, the Morlet

wavelet has optimal joint time-frequency concentration.
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2.5 Wavelet Power Spectrum

In view of the energy preservation formula, and in analogy with the terminology used in the

Fourier case, we simply define the (local) wavelet power spectrum as Sx(s, τ) = |Wx(s, τ)|2 ,

which gives us a measure of the local variance. Torrence and Compo (1998), showed how the

statistical significance of wavelet power can be assessed against the null hypothesis that the

data generating process is given by an AR (0) or AR (1) stationary process with a certain

background power spectrum (Pf).5 For more general processes, one has to rely on Monte

Carlo Simulations.

2.6 Cross-Wavelets and Phase-Differences

2.6.1 Cross-Wavelet Power

The cross-wavelet transform of two time-series, x(t) and y(t), first introduced by Hudgins

et al. (1993), is simply defined as

Wxy (s, τ) =Wx (s, τ)W
∗
y (s, τ) , (11)

where Wx and Wy are the wavelet transforms of x and y, respectively. The cross-wavelet

power is given by |Wxy|. While we can interpret the wavelet power spectrum as depicting the

local variance of a time-series, the cross-wavelet power of two time-series depicts the local

covariance between these time-series at each scale and frequency. Therefore, cross-wavelet

power gives us a quantified indication of the similarity of power between two time-series.

Torrence and Compo (1998) also derived the cross-wavelet distribution assuming that the

two time-series have Fourier Spectra P x
f and P

y
f .
6 For more general data generating processes

one has to rely on Monte Carlo simulations.

5D
³
|Wx(s,τ)|2

σ2x
< p

´
= 1

2Pfχ
2
v (p) ,at each time τ and scale s. The value of Pf is the mean spectrum at

the Fourier frequency f that corresponds to the wavelet scale s – in our case s ≈ 1
f , see equation (??) –

and v is equal to 1 or 2, for real or complex wavelets respectively.

6Under the null, the cross-wavelet distribution is given by D

µ
|WxW

∗
y |

σxσy
< p

¶
= Zv(p)

v

q
P x
f P y

f ,where

Zv (p) is the confidence level associated with the probability p for a pdf defined by the square root of the
product of two χ2 distributions.
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2.6.2 Wavelet Coherency

As in the Fourier spectral approaches, wavelet coherency can be defined as the ratio of the

cross-spectrum to the product of the spectrum of each series, and can be thought of as

the local correlation, both in time and frequency, between two time-series. The wavelet

coherency between two time-series, x(t) and y(t), is defined as follows:

Rxy (s, τ) =
|S (Wxy (s, τ))|

|S (Wxx(s, τ))|
1
2 |S (Wyy(s, τ))|

1
2

, (12)

where S denotes a smoothing operator in both time and scale. Smoothing is necessary.

Without that step, coherency is identically one at all scales and times. Smoothing is achieved

by a convolution in time and scale. The time convolution is done with a Gaussian and the

scale convolution is performed by a rectangular window; see Cazelles et al. (2007) for details.

Theoretical distributions for wavelet coherency have not been derived yet. Therefore,

to assess the statistical significance of the estimated wavelet coherency, one has to rely on

Monte Carlo simulation methods.

2.6.3 Phase Difference and the Instantaneous Time Lag

The phase-difference gives us information about the delays of the oscillations between two

time-series, x(t) and y(t), as a function of time and frequency. As we said before, the phase

of a given time-series, φx, can be viewed as the position in the pseudo-cycle of the series.

The phase-difference, φx,y, characterizes phase relationships between the two time-series, i.e.

their relative position in the pseudo-cycle. The phase-difference is defined as

φx,y(s, τ) = tan
−1
µ
I {Wxy(s, τ)}
R{Wxy(s, τ)}

¶
, with φx,y ∈ [−π, π] . (13)

A phase-difference of zero indicates that the time-series move together at the specified

frequency. If φx,y ∈
¡
0, π

2

¢
then the series move in phase, but the time-series y leads x. If

φx,y ∈
¡
−π
2
, 0
¢
then it is x that is leading. A phase-difference of π (or −π) indicates an anti-

phase relation. If φx,y ∈
¡
π
2
, π
¢
then x is leading. Time-series y is leading if φx,y ∈

¡
−π,−π

2

¢
.
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With the phase difference one can calculate the instantaneous time lag between the two

time-series:

∆T (s, τ) =
φx,y (s, τ)

2πF (τ)
, (14)

where F (τ) is the instantaneous frequency defined in a given frequency band as the first

normalized moment in frequency of Wxy:

F (τ) =

R f2
f1

f |Wxy (f, τ)| dfR f2
f1
|Wxy (f, τ)| df

(15)

2.7 Transform of finite discrete data

If one is dealing with a discrete time-series x = {xn, n = 0, . . . , T − 1} of T observations

with a uniform time step δt, the integral in (3) has to be discretized and is, therefore, replaced

by a summation over the T time steps; also, it is convenient, for computational efficiency,

to compute the transform for T values of the parameter τ , τ = mδt; m = 0, . . . , T − 1. In

practice, naturally, the wavelet transform is computed only for a selected set of scale values

s ∈ {sk, k = 0, . . . , F − 1} (corresponding to a certain choice of frequencies fk). Hence, our

computed wavelet spectrum of the discrete-time series x will simply be a F × T matrix Wx

whose (k,m) element is given by

Wx(k,m) =
δt√
sk

T−1X
n=0

xnψ
∗
µ
(n−m)

δt

sk

¶
k = 0, . . . , F − 1, m = 0, . . . , T − 1. (16)

Although it is possible to calculate the wavelet transform using the above formula for each

value of k andm, one can also identify the computation for all the values ofm simultaneously

as a simple convolution of two sequences; in this case, one can follow the standard procedure

and calculate this convolution as a simple product in the Fourier domain, using the Fast

Fourier Transform algorithm to go forth and back from time to spectral domain; this is the

technique prescribed by Torrence and Compo (1998).7

7A program code based on the above procedure is available at the site
http://paos.colorado.edu/research/wavelets/.
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As with other types of transforms, the CWT applied to a finite length time-series in-

evitably suffers from border distortions; this is due to the fact that the values of the trans-

form at the beginning and the end of the time-series are always incorrectly computed, in the

sense that they involve “missing”values of the series which are then artificially prescribed;

the most common choices are zero padding — extension of the time-series by zeros — or peri-

odization. Since the “effective support”of the wavelet at scale s is proportional to s, these

edge-effects also increase with s. The region in which the transform suffers from these edge

effects is called the cone of influence. In this area of the time-frequency plane the results

are unreliable and have to be interpreted carefully. In this paper, the cone of influence is

defined, following Torrence and Compo (1998), as the e−folding time of the wavelet at the

scale s, that is, so that the wavelet power of a Dirac δ at the edges decreases by a factor of

e−2. In the case of the Morlet wavelet this is given by
√
2s.

2.8 Wavelet Spectra Distance Matrix

The SVD decomposition of the covariance matrix Cxy :=WxW
H
y , whereWH

y is the conjugate

transpose, also known as the Hermitian transpose, of Wy yields

Cxy = UΣV H ,

where the matrices U and V are unitary matrices (i.e. UHU = V HV = I), whose columns,

uk and vk are, respectively, the singular vectors for Wx and Wy, and Σ is a diagonal matrix

with the singular values ordered from highest to lowest, σ1 ≥ σ2 ≥ . . . ≥ σF ≥ 0. The

number of nonzero singular values is equal to the rank of the matrix Cxy. The SVD of Cxy

guarantees that the singular vectors uk and vk solve the problem of maximizing

pHk Cxyqk = p
H
k WxW

H
y qk = p

H
k Wx

¡
qHk Wy

¢H
for all vectors pk and pk satisfying the orthogonality constraints pHk pj = δkj, q

H
k qj = δkj,

j = 1, . . . , k, where δkj is the Kronecker delta. In other words, the so-called leading patterns,
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obtained by projecting each spectrum Wx and Wy onto the respective singular vectors,

Lk
x := u

H
k Wx and Lk

y := v
H
k Wy, (17)

are the linear combinations of the columns of Wx and Wy, respectively, that maximize

their mutual covariance (subject to the referred orthogonality constraints). Moreover, since

UHWxWyV = UHCxyV = Σ, it follows immediately that the (squared) covariance of the kth

leading patterns is given by

|Lk
x (L

k
y)

H |2 = σ2k.

On the other hand, the (squared) covariance of Wx and Wy is given by kCxyk2F , where k.kF

is the Frobenius matrix norm, defined by kAkF :=
qP

ij |aij|2. But, since this norm is

invariant under a unitary transformation, we have

kCxyk2F = kUHCxyV k2F = kΣk2F =
FX
i=1

σ2i .

The (squared) singular values, σ2k, are the weights to be attributed to each leading pattern

and are equal to the (squared) covariance explained by each pair of singular vectors (axis).

If we denote by Lx and Ly the matrices whose rows are the leading patterns Lk
x and Lk

y,

equation(17) shows that Lx = UHWx and Ly = V HWy, from where we immediately obtain

Wx = ULx =
FX
k=1

ukL
k
x, Wy = V Ly =

FX
k=1

vkL
k
y.

In practice, we select a certain numberK < F of leading patterns, guaranteeing, for example,

that the fraction of covariance
³PK

k=1 σ
2
k

´
/
³PF

k=1 σ
2
k

´
is above a certain threshold, and use

Wx ≈
KX
k=1

ukL
k
x, Wy ≈

KX
k=1

vkL
k
y.

What we have done so far is to reduce the information contained in the two wavelet

spectra to a few components. Now we need to find a metric to measure the distance between
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Figure 1: Angles between real vectors.

the most relevant components associated to the different wavelet spectra. We need to

measure the distance between the leading patterns, Lk
x and Lk

y, and between the singular

vectors, uk and vk. To do so, we compare two vectors by measuring the angle between each

pair of corresponding segments. This would be easy to perform if all the values were real

(see Figure 1).

In our case, because we use a complex wavelet, we need to define an angle in a complex

vector space. Unfortunately, very little guidance is available in the mathematical literature

on angles in complex vector spaces and there are several possibilities, Scharnhorst (2001).

Recall that, given two vectors a and b in the Euclidian vector space Rn, with the usual

inner product ha,biR = aTb and norm kak =
p
ha,aiR, the angle between the two vectors,

Θ = Θ (a,b) , can be found using the formula:

cos (Θ) =
ha,biR
kakkbk , Θ ∈ [0, π]. (18)

Now, assume that a and b are vectors in the vector space Cn. There are two reasonable

approaches to define a (real)-valued angle between a and b. The first one is to consider the

isomorphism

φ : Cn −→ R2n

a = (a1, . . . , an) 7→ R(a1), I(a1), · · ·R(an),I(an)
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and simply define the Euclidean angle between the complex vectors a and b as the angle

(defined by using formula (18)) between the real vectors φ(a) and φ(b).

The other approach is based on the use of the Hermitian inner product ha,biC = aHb

and corresponding norm kak =
p
ha,aiC.We can then define the so-called Hermitian angle

between the complex vectors a and b, ΘH(a,b), by the formula

cos (ΘH) =
|ha,biC|
kakkbk , ΘH ∈

h
0,
π

2

i
. (19)

The measures are not equal, but they are related; see Scharnhorst (2001) for details. In

what follows, we make use of the Hermitian angle.8

The distance between the kth leading patterns Lk
x and Lk

y is computed as:

d
¡
Lk
x , Lk

y

¢
=

1

T − 1

T−1X
n=1

ΘH

¡
lkx(n) , l

k
y(n)

¢
, (20)

where lkx(n) is the two-component vector defined by the two “points”inR×C, Pn = (n, L
k
x(n))

and Pn+1 = ((n+1), L
k
x(n+1)), i.e. l

k
x(n) = (1, L

k
x(n+1)−Lk

x(n+1)), where L
k
x(n) denotes

the nth component of Lk
x. The distance between the singular vectors, d (uk,vk) is defined in

an analogous way.

To compare the wavelet spectra of country x and country y, we compute the following

distance:

dist (Wx,Wy) =

PK
k=1 σ

2
k

£
d
¡
Lk
x, L

k
y

¢
+ d (uk,vk)

¤PK
k=1 σ

2
k

, (21)

where σ2k are the weights equal to the squared covariance explained by each axis. This

distance is computed for each pair of countries. With this information, we can fill a matrix

of distances.
8Using the Euclidian approach angle does not change the results in a sensible way.
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3 Business Cycle Synchronism in the Euroland

We analyze the cycles of the core of the Euro area looking both at the frequency content

and phasing of cycles. In our analysis we consider the first 12 countries joining the Euro:

Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Nether-

lands, Portugal and Spain. For this type of purpose, to measure real economic activity, most

studies use either real GDP or and Industrial Production Index. We will use the Industrial

Production Index because wavelet analysis is quite data demanding, and to have monthly

data is a bonus. Using the International Financial Statistics database of the IMF, we gather

data from July 1975 until August 2008. To remove short-run noise (frequencies above one

year and a half) and long-run trend (frequencies below 9 years), we apply a wavelet-filter

(see equation 4).

In Table 1, we can find the countries dissimilarity matrix, based on formula (21) and

computed with the whole dataset.

In this sense, the tighter countries are Germany, Netherlands and Austria. The most

dissimilar are Portugal and Greece. Also, if we find the average of the distance between

each country and every other country, we see that, on average, the country that is closest to

everyone else is Germany, followed by Austria, Netherlands, Belgium, Luxembourg, Spain,
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Figure 2: Distance tree, on the left, and multidimensional scaling map, on the right.

Ireland, France, Italy, Finland, Portugal, and Greece. Interestingly, although Luxembourg

and Belgium share a common currency since 1944, these two countries are not particularly

synchronous. According to Table 1, this pair of is just the 20th most synchronous pair.

To visualize this matrix, we first perform some clustering analysis (e.g. see Camacho

et al. 2006). First we produce a hierarchical tree clustering. The idea is to group the

countries according to their similarities. We follow a bottom up approach. We start with

the 12 countries and group, in cluster, the two most similar countries, say C1 and C2. In

the second round, countries C1 and C2 are replaced by a a combination of the two, say C13.

Now one has to build a new matrix, not only with the distance between the 10 remaining

countries, but also with the distance between each country and C13 (which we consider to

be the average of the individual distances). The procedure continues until there is only

one cluster with all the countries. In Figure 2, on the left, we can see the result of this

hierarchical clustering.

From the tree it is clear that there is a core, formed by Germany, Austria, Netherlands,

Luxembourg, Spain and France. To this group, we should add Belgium and, maybe, Ireland

(from the distance matrix, it is clear that Ireland is further away from the core than Belgium).

Although very suggestive, this tree has some limitations that may distort the analysis,

because each country is only linked to one other country (or cluster), one may loose site of
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the whole picture. We have already mentioned the case of Belgium that is closer to the core

than Ireland. Greece is another example. Greece is closer to Austria than to Finland and

this cannot be inferred from the tree. An alternative approach is to use the distance matrix

to map the countries in a two axis system. This cannot be performed exactly because the

distance matrix is not based on euclidean distances. Still, one can reduce the distance matrix

to a two column matrix. This new matrix, the configuration matrix, contains the position of

each country in two orthogonal axis. Therefore we can put each country on a two dimensional

map. The positions in the map are chosen in a way that minimizes the square differences

between the distances in the map and the ‘true’ distances given in Table 1. Figure 2, on the

right, shows this map. Again, it is clear that there is an Euroland core, formed by Germany,

Austria, the Benelux countries, France, Spain, and, maybe, Ireland.9 Camacho et al. (2006)

also concluded that Portugal, Greece and Finland were the countries exhibiting the less

"European" cycles. It is comforting to observe that quite radically different approaches do

lead to some overlapping results.

Figure 2 gives us a picture of how similar were business cycles in this group of countries

since 1975. But it does not tell us how synchronizations have evolved. For example, it is

clear that some countries are far away from the Euro core, but nothing is said about their

evolution. Are their business cycles becoming more alike or, on the contrary, no convergence

is observed? This is the type of analysis that we will try to do next.

3.1 Wavelet Power Spectra

In Figure 3, we can see the continuous wavelet power spectra of the Industrial Production

for several countries. To assess the statistical significance, we need to define the null hypoth-

esis. One could use theoretical formulas derived for AR(0) and AR(1) processes. But the

assumption that economic time-series follow a white or red noise is quite heroic, therefore

we will rely on Monte Carlo simulations. We follow Rouyer et al. (2008) and construct the

9Using the euclidian angles approach, defined in equation 18, the pictures would be similar with one
important difference: Ireland would be clearly away from the core. That is why Ireland appears with a
different shade.
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beta surrogate series The ‘beta surrogates’ display a similar variance and autocorrelation

structure as the original time series and, additionally, display the same relative distribution

of frequencies, i.e. the same slope of the Fourier spectrum, as the original time series. With

this approach, the surrogate series approximately keep the mean, standard deviation, auto-

correlation and partial auto-correlation functions and the power spectrum of the original

data.

Looking at the time-scale decomposition interesting facts are revealed. With the excep-

tion of Greece, every country shows a spike (white line) around the 6−years frequency. This

spike is stronger in the 1980s for several countries (like Ireland, Luxembourg, Germany, Bel-

gium, Netherlands and Austria), while for others, like Portugal and Finland, the high power

region is situated between 1990 and 1995). When we look at higher frequencies, around

3−year frequencies, we observe a spike in the 1990s that is common to several countries

(although not all of them). The strongest similarity, the six−year spike, which is common

to every country, seems independent of the Euro adoption in 1999. Greece starts displaying

this same spike slightly before 2000, which may coincide with the strongest efforts of Greece

to join the Euro (Greece would eventually join the Euro in 2001).

Although suggestive, the wavelet power spectrum is not the best tool to analyze business

cycle synchronization, as no information is revealed about the phase. Therefore, even if two

countries share a similar high power region, one cannot infer that their business cycles look

alike. To compare countries, cross-wavelet tools are more helpful.

3.2 Phase-difference and cross-wavelets

The phase-difference gives us information on the delay, or synchronization, between oscil-

lations of the two time-series, the cross-wavelet transform will tell us if the correlation is

significant or not. To perform the cross-wavelet analysis we will focus on the wavelet co-

herency, instead of the wavelet cross spectrum, because there is some redundancy between

both measures and the wavelet coherency has the advantage of being normalized by the

power spectrum of the two time-series. Regions of high coherency between two countries
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Figure 3: Wavelet Power Spectrum – The black contour designates the 5% significance
level estimated by Monte Carlo simulations beta surrogate series. The cone of influence,
which indicates the region affected by edge effects, is shown with a thin black line. The
color code for power ranges from blue (low power) to red (high power). The white lines
show the maxima of the undulations of the wavelet power spectrum.
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are synonym of strong local correlation.

In figure 4 we have, on the left, the coherency between German industrial production and

the other countries. On the right, we have the phase and an estimate of the instantaneous

time lag (equation 14) between the two time-series. On the right we observe two graphs. In

the top, the calculations are done between 1.5 and 4.5−year frequencies. In the bottom, we

have analysis is performed in the longer run, between 4.5 and 8−year frequencies. Figure 5

gives us the same information but taking France as the reference. We focus on the relations

with Germany and France because these are the biggest economies among the countries that

formed the Euro core.

Looking at figures 4 and 5, and focusing on the countries that we have identified as the

core in Figure 2, we observe that business cycles between Germany and Austria are notably

synchronous. The regions of high coherency are very wide, and the phases are very much

aligned. These two countries almost behave like one, as we can confirm by noting that the

cross-wavelet comparisons between France and Germany are almost indistinguishable from

the cross-wavelet comparisons between France and Austria. A similar thing, although not as

strong, can be said about Netherlands, although the regions of high coherence are situated

at low frequencies. In the case of Belgium, there are several regions of high coherency

with Germany both at low frequencies and, specially, at high frequencies. Interestingly, the

phases are aligned at high frequencies, but not so much so at low frequencies. Belgium

phases are aligned with the French phases. Luxembourg is an interesting case, because

not only phases are not aligned at low frequencies but also, at high frequencies, after 1995

the series are consistently unaligned. Still, comparing Luxembourg with France one sees

that Luxembourg’s accent is more French than German. France and Germany show several

regions of high coherency, specially after 1990. The shorter run cycle (higher frequencies)

displays similar patterns, but, in the longer run cycle, this is no longer true, and Germany

follows France with a lag of about one year. Spain, after 1990, shows regions of strong

coherency, specially with France, and the shorter run cycle is aligned both with Germany

and France. The longer cycle is similar to the French one. Finally, Ireland does not display
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Figure 4: On the Left:Cross-Wavelet Coherency − The black thick contour designates the
5% significance level estimated by Monte Carlo simulations using beta surrogate series.
The color code for coherency ranges from blue (low coherency — close to zero) to red (high
coherency — close to one). On the right: Phase and instantaneous time lag between the two
series. The green line represents the German phase, and the blue line represents the other
country’s phase. The red line gives us the instantaneous time lag between the two series.
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Figure 5: On the Left:Cross-Wavelet Coherency − The black thick contour designates the
5% significance level estimated by Monte Carlo simulations using beta surrogate series.
The color code for coherency ranges from blue (low coherency — close to zero) to red (high
coherency — close to one). On the right: Phase and instantaneous time lag between the two
series. The green line represents the French phase, and the blue line represents the other
country’s phase. The red line gives us the instantaneous time lag between the two series.
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many regions of high coherency, but it is clear that after 1995 the phases are getting more

similar to the phases of Germany and France.

With the exception of Portugal, countries that are not in the core, are converging to

the core. E.g., although Greece does not display large areas of high coherency, it displays a

short-run cycle that after the 1990’s is similar to the German cycles. After 1995, its longer

run cycle is highly coordinated with the French one. Finland, after 1990, shows some areas

of high coherency with Germany, specially at the 5−year scale between 1990 and 1997 and

at the 2∼4-year time scale around the year 2000. The shorter-run phase has been quite

aligned since 1990 and the longer-run phase clearly converged to the German one. Finally,

Italy, specially after the 1990s, shows several regions highly coherent with France, and the

short-run cycle is very well aligned with the French one too. It is also clear that after 1995

the longer-run phase is converging to the French one.
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4 Conclusions

We have claimed that wavelet analysis can naturally be applied to the study of business cycles

(given its periodic nature), specially when one is interested in estimating the spectrum as a

function of time, revealing how the different periodic components of the time-series change

over time. We used the wavelet spectra to investigate business cycles synchronization in

the Euro12 countries. To compare the wavelet spectra we focused on the common high

power time-frequency regions, extracting the components of the covariance matrix of the

wavelet spectra pairs using the ‘Singular Value Decomposition’. Because the wavelet is

complex, we had to define the distance between complex vectors, which led us to use the

so-called Hermitian angles. Given this, we proposed a metric to measure the distances

between wavelet spectra and built a dissimilarity matrix, to which we applied clustering and

multidimensional scaling techniques and derived an Euro-core and an Euro-periphery in

terms of business cycles synchronism. Using cross wavelet tools, such as wavelet coherency,

wavelet phases and wavelet phase-differences, we checked if business cycles of the peripheral

countries have became more synchronous with the Euro-core business cycles.

According to our results, Germany, Austria, France, Austria, Spain and the Benelux

countries form the Euro-core, while Portugal, Italy, Greece, and Finland are in the periphery.

In the Euro-core the two biggest economies are Germany and France, around which the

other countries gravitate. The Austrian business cycle is almost indistinguishable from the

German one and the same happens, in a lesser degree, with the Netherlands. The Belgium

business cycle, and the Spanish after 1990, is aligned with France. We have found some,

although not full, support to the argument that countries that share a common currency will

see there business cycles becoming more synchronous. With the exception of Portugal, every

country not in the Euro-core is converging to the core, This convergence is not homogeneous,

though. For example, while the Italian business cycle converges to the French one, Greece

displays a short-run cycle that, after the 1990s, is converging to the German cycles and a

longer-run cycle that, after 1995 is converging to the French cycle and Finland is converging

to the German cycle both at higher and lower frequencies.

28



References

[1] Aguiar-Conraria, L., Azevedo, N. and Soares, M. J. (2008) "Using Wavelets to Decom-

pose the Time-Frequency Effects of Monetary Policy", Physica A: Statistical Mechanics

and its Applications, 387, 2863—2878.

[2] Artis, M., Krolzig, H.-M. and Toro, J. (2004) "The European business cycle", Oxford

Economic Papers, 56, 1—44.

[3] Baxter, M. and Kouparitsas, M. (2005) "Determinants of business cycle comovement:

a robust analysis", Journal of Monetary Economics, 52, 113—157.

[4] Bloomfield, D., McAteer, R., Lites, B., Judge, P., Mathioudakis, M. and Keena, F.

(2004), "Wavelet Phase Coherence Analysis: Application to a Quiet-Sun Magnetic

Elelement", The Astrophysical Journal, 617, 623—632.

[5] Camacho, M., Perez-Quiros, G. and Saiz, L. (2006) "Are European business cycles close

enough to be just one?" Journal of Economics Dynamics and Control, 30, 1687—1706.

[6] Camacho, M., Perez-Quiros, G. and Saiz, L. (2008), “Do European Business Cycles

Look Like One”, Journal of Economic Dynamics and Control, 32, 2165-2190.

[7] Cazelles, B., Chavez, M., de Magny, G. C., Guégan, J-F and Hales, S. (2007), "Time-

Dependent Spectral Analysis of Epidemiological Time-Series with Wavelets", Journal

of the Royal Society Interface, 4, 625—36.

[8] Clark, T.E. and Wincoop, E. (2001) "Borders and business cycles", Journal of Inter-

national Economics, 55, 59—85.

[9] Connor, J. and Rossiter, R. (2005), "Wavelet Transforms and Commodity Prices",

Studies in Nonlinear Dynamics & Econometrics, 9 (1), Article 6.

[10] Crowley, P. (2007), "A Guide to Wavelets for Economists", Journal of Economic Sur-

veys, 21 (2), 207—267.

29



[11] Crowley, P., Maraun, D. and Mayes, D. (2006) "How hard is the euro area core? An

evaluation of growth cycles using wavelet analysis", Bank of Finland Research, Discus-

sion Papers 18.

[12] Daubechies, I. (1992)Ten Lectures on Wavelets, CBMS-NSFRegional Conference Series

in Applied Mathematics, vol. 61 SIAM, Philadelphia.

[13] Forni, M., Hallin, M, Lippi, M. and Reichlin, L. (2000) “The Generalized Dynamic-

Factor Model: Identification and Estimation”, The Review of Economics and Statistics,

82, 540-554.

[14] Foufoula-Georgiou, E. and Kumar, P. (1994), Wavelets in Geophysics, volume 4 of

Wavelet Analysis and Its Applications. Academic Press, Boston.

[15] Frankel, J.A. and Rose, A.K. (1998) "The endogeneity of the optimum currency area

criteria", The Economic Journal, 108, 1009—1025.

[16] Gallegati, M. (2008), "Wavelet analysis of stock returns and aggregate economic activ-

ity", Computational Statistics and Data Analysis, 52, 3061–3074.

[17] Gallegati, M. and Gallegati, M. (2007), "Wavelet Variance Analysis of Output in G-7

Countries", Studies in Nonlinear Dynamics & Econometrics, 11 (3), Article 6.

[18] Gençay, R., Selçuk, F. and Witcher, B. (2005), "Multiscale Systematic Risk", Journal

of International Money and Finance, 24, 55—70.

[19] Goupillaud, P., A. Grossman and Morlet, J. (1984), "Cycle-Octave and Related Trans-

forms in Seismic Signal Analysis", Geoexploration, 23, 85—102.

[20] Grossmann, A. and Morlet, J. (1984), "Decomposition of Hardy Functions into Square

Integrable Wavelets of Constant Shape", SIAM Journal on Mathematical Analysis, 15,

723-736.

[21] Harding, D. and Pagan, A. (2006) "Synchronization of cycles", Journal of Econometrics,

132, 59—79.

30



[22] Hudgins, L., Friehe, C. and Mayer, M. (1993) "Wavelet Transforms and Atmospheric

Turbulence" Physical Review Letters, 71:20, 3279-82.

[23] Imbs, J. (2004) "Trade, finance, specialization, and synchronization", The Review of

Economics and Statistics, 86, 723—734.

[24] Inklaar, R., Jong-A-Pin, R. and de Haan J. (2008) "Trade and business cycle syn-

chronization in OECD countries–A re-examination", European Economic Review, 52,

646—666

[25] Kaiser, G. (1994), A Friendly Guide to Wavelets, Birkhäuser, Basel.

[26] Raihan, S., Wen, Y. and Zeng, B. (2005), "Wavelet: A New Tool for Business Cycle

Analysis", Working Paper 2005-050A, Federal Reserve Bank of St. Louis.

[27] Ramsey, J. and Lampart, C. (1998a), "Decomposition of Economic Relationships by

Time Scale Using Wavelets: Money and Income", Macroeconomic Dynamics, 2, 49—71.

[28] Ramsey, J. and Lampart, C. (1998b), "The Decomposition of Economic Relationships

by Time Scale Using Wavelets: Expenditure and Income", Studies in Nonlinear Dy-

namics and Econometrics, 3, 23—42.

[29] Rose, A. and Engel, C., (2002) "Currency unions and international integration", Journal

of Money, Credit and Banking, 34, 1067—1089.

[30] Rouyer, T., Fromentin, J.-M., Stenseth, N. and Cazelles, B. (2008) "Analysing multiple

time series and extending significance testing in wavelet analysis", Marine Ecology

Progress Series, 359, 11-23.

[31] Scharnhorst, K. (2001) "Angles in Complex Vector Spaces", Acta Applicandae Mathe-

maticae, 69, 95—103.

[32] Selover, D. and Jensen, R. (1999) "‘Mode-locking’ and international business cycle

transmission", Journal of Economic Dynamics and Control, 23, 591—618.

31



[33] Torrence, C. and Compo, G. P. (1998), "A Practical Guide to Wavelet Analysis",

Bulletin of the American Meteorological Society, 79, 605—618.

32


